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Abstract—In this paper, we consider the distributed hypothesis
testing (DHT) problem where two nodes are constrained to
transmit constant bits to a central decoder. In such cases, we show
that in order to achieve the optimal error exponents, it suffices to
consider the empirical distributions of observed data sequences
and encode them to the transmission bits. With such a coding
strategy, we develop a geometric approach in the distribution
spaces to show the optimal achievable error exponents and coding
scheme for the following cases: (i) both nodes can transmit
log, 3 bits; (ii) one of the nodes can transmit 1 bit, and the
other node is not constrained; (iii) the joint distribution of the
nodes are conditionally independent given one hypothesis. Our
approach essentially reveals new potentials for characterizing the
precise error exponents for DHT with general communication
constraints.

I. INTRODUCTION

The machine learning problems with distributed data have
gained much attentions recently in federated learning [1],
where the available data are observed at different nodes. The
central problem of distributed learning is to develop an effi-
cient learning scheme under communication or computation
constraints, for various learning tasks, such as label inference
or feature extraction. On the other hand, such problems have
also been extensively studied in information theory [2]-[5],
and the behaviors are typically much more complex than their
non-distributed counterparts.

In this paper, we investigate the distributed hypothesis
testing (DHT) problem as follows. Suppose that there are a
pair of random variables X,Y and joint distributions P)((O&)/

and P)%), In addition, there are n samples i.i.d. generated

from either P)((OQ/ or P)%), which may correspond to the two
hypothesis H = 0 and H = 1 in statistics, or different labels
in supervised learning problems. Moreover, in the distributed
setup, we assume that there are two nodes, referred to as node
Nx and node Ny, each observes only the n i.i.d. samples of
X and the samples of Y, respectively, and each node sends
an encoded message to a central decoder. Then, the decoder
makes a decision of the hypothesis H according to the received
messages. In particular, we focus on the case where both
Nx and Ny are required to encode (compress) the observed
length-n sequences to constant number of bits, due to limited
communication budgets. Our goal is to design the encoder
of each node and the central decoder to minimize the error
probability of inferring the label. Specifically, we focus on

the asymptotic regime such that n is large, and characterize
the error exponent pair for both type-I and type-II errors. The
rigorous mathematical formulation is presented in Section II.

The general framework of such multiterminal statistical
inference problems was first introduced in [6]. Then, the
DHT problem with full side information was formulated and
investigated in [7], where the sequence observed by Ny can
be directly transmitted to the center, while Nx can only
send messages at some positive rate. Following this work,
there have been a series of studies on DHT under different
settings of communication constraints, which are typically
represented as the communications rates, or equivalently, the
compression rates of the encoders. Specifically, the DHT
problem with zero-rate compression was first introduced in
[2], where the one-bit compression case was also discussed.
The achievable error exponent pairs under two-sided one-bit
compression were later established in [3]. The DHT problem
under zero-rate compression was also investigated in [8],
[9]. A comprehensive survey of representative works through
this line of researches can be found in [4]. Recently, the
studies on DHT are still fairly active, with new analyzing
tools and settings considered. For example, the DHT problem
under zero-rate communication constraints was revisited in
[5] from the perspectives of information-spectrum approach
and finite blocklength analysis, and the variant of DHT with
transmission noises was investigated in [10]. Despite of such
massive studies, the characterizations of DHT under general
communication constraints still remain open, except for several
special cases, e.g., two-sided one-bit compression (cf. [3]) and
zero-rate compression (cf. [4]).

The primary aim of this paper is to investigate the optimal
error exponent pairs of DHT with constant-bit communication
constraints, with the following main contributions. First, we
demonstrate that the optimal encoding scheme depends only
on the empirical distributions of the observed sequences, rather
than the sequences themselves, as long as the compression
rates are zeros. With such coding strategy, we develop a
geometric approach in the distribution spaces to characterize
the achievable error exponent pairs. Using this approach, we
further provide lower bounds for the error exponents, via
investigating the performance under a threshold decision rule.
In addition, we show that the lower bounds are tight and
establish the optimal error exponents, for the following cases:



(1) two-sided one-trit compression, where both nodes can
transmit one-trit (trinary digit) message; (ii) one-sided one-
bit compression, where one node can transmit one bit, and the
other node is not constraint; (iii) the nodes are conditionally in-
dependent given one hypothesis. Our characterization extends
previous studies on two-sided one-bit compression (cf. [3], [4])
and provides a novel geometric interpretation, which suggests
new potentials for error exponent region characterization of
DHT under general communication constraints.

II. PROBLEM FORMULATION AND PRELIMINARIES

In this section, we introduce the mathematical formulation
of DHT problem, and provide some useful definitions and
notations.

A. Problem Formulation

First, we assume both X and Y are discrete random
variables, taking values from finite alphabets X and Y, re-
spectively. Then, the general setup of DHT can be illustrated
as Fig. 1. When H = 4, n i.i.d. sample pairs {(X;,Y;)}7_;
are generated from the joint distribution P)(gg/, with node Nx
observing X™ £ (X1, ..., X,,) and node Ny observing Y™ =
(Y1,...,Y,), respectively. Then, nodes Nx and Ny compress
their observed sequences with the encoders f,: X" — J\/[g?)
and g,: Y* — Mgf), respectively, which encode the ob-
served sequences into messages f,(X™) and g,(Y"™). The
encoded messages are further sent to a central machine,
which makes the decision H 2 ¢, (f,(X™), g, (Y™)), with
On: Mg?) X Mgf) — {0, 1} being used as the decoder.

Due to the limited communication budgets in practice, there
are typically constraints on the sizes of the message sets Mg?')
and J\/[gf ). Following the convention introduced in [4], we use
1l 2 [
of message sets, and express the constraints on || f,|| and gy ||
as a pair (Rx, Ry ), referred as the rate of encoders f, and
gn, With Rx, Ry € [0,00)U{0,;: M > 1}. Specifically, each
Rx € [0,00) indicates the constraint!

and || g, | = ‘Mgf )‘ to denote the cardinalities

1
lim sup — log || || < Rx, (1)
n—oo N
and each Rx = 0, with M > 1 indicates the constraint
limsup || £,|| < M, 2
n— o0

namely, the encoded message f,(z™) is allowed to take
at most M distinct values®. Specifically, we refer to f,
(or g,) as a zero-rate encoder if it satisfies the constraint
Rx = 0 (or Ry = 0), and the corresponding hypothesis
testing setting is called the zero-rate compression regime. In
this paper, we focus on the DHT problem under constant-
bit communication constraints, also referred to as constant-bit
compression regime, where we have Rx € {Oa7: M > 1} or
Ry € {OM: M > 1}.

' Throughout, the logarithm log(+) indicates the natural logarithm with base
e, unless otherwise specified.

2For mathematical convenience, we allow M to take 1, where no informa-
tion can be transmitted from the node to center.
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Fig. 1. Distributed Hypothesis Testing Setup

Note that the coding scheme can be characterized as a
functional tuple C,, = (fy, gn, ¢n). For a given coding scheme
C,, the performance can be characterized by the type-I error
70(Cy,) and type-II error 71 (C,,), defined as

wi(en)éP{H#i‘H:i}, 3)

for i = 0,1, where P {-} denotes the probability with respect
to the corresponding i.i.d. sampling process over n sample
pairs.

In particular, we consider the asymptotic regime such that
n is large and characterize the achievable error exponents,
defined as follows.

Definition 1 (Error Exponent Region): Given a rate pair
(Rx, Ry), an error exponent pair (Ey, E) is achievable under
(Rx, Ry), if there exists a sequence of coding schemes {C,, =
(fns Gns ®n) tn>1 such that the encoders f,, and g, satisfy the
rate constraints (Rx, Ry ), and

1
lim —logm;(C,) = —E;,

n—00 M

i=0,1. 4)

Then, we define the error exponent region &(Rx, Ry) as
the closure of the set of all achievable error exponent pairs
under the rate constraints. Specifically, under constant-bit
compression, if the coding schemes C,,’s in (4) have a common
decoder ¢ for all n > 1, we call an error exponent pair
(Ey, E7) is achievable under decoder ¢. Then, we use E[{}]
(or simply &[¢]) to denote the closure of the set of all such
pairs.

Our goal is to characterize the error exponent region under
constant-bit compression regime and the coding schemes to
achieve the error exponents.

B. Definitions and Notations

Given an alphabet Z € {X,Y,X x Y}, we use PZ to denote
the set of distributions supported on Z. For a given distribution
Pz € P*, we use (Pz)®" to denote the n-th product of Py.
In addition, for Py, Qz € P%, we introduce the metric

dmax(PZ7QZ) éIgeaZ),('PZ(Z)_QZ(Z)' (5)

For a joint distribution Qxy € P**Y the corresponding
marginal distributions are denoted by [Qxy]x € P¥ and
[Q@xy]y € PY. In particular, for each i = 0,1, we denote
P(l) L [P(l) ] P(l) L [P(Z) ]

X XylX> Ly Xyly:

A sequence (z1,...,2,) € Z" is denoted by {z;}? , or
simply z". With slight abuse of notation, we use (z™,y™) or



simply z™y™ to denote the sequence {(z;,y;)}7—q € (XxY)™,
and denote the set

{(z™,y"): 2" € 8x,y" € 8y} C (X x Y)" (6)

by Sx x Sy, for given Sx C X" and Sy C Y.

We also introduce the definition of Hammingd-
neighborhood as follows.

Definition 2: The Hamming d-neighborhood of 8§ ; C Z'™ is

NE(Sz) 2 {2" € 2 du(2",2") < k for some 2" € 8,1,

where dy (2", 2"™) denotes the Hamming distance between
2" 20 e 20 e,

n zn 1 En
dH(Z y R ) = E 1{2ﬁ£2,;};
i=1

and where 1. denotes the indicator function.
For a given sequence 2" € 2", we use P.» € P% to denote
its empirical distribution (type), defined as

1 n
Pon(2) =~ D 1=y forall 2’ € 2.

=1

Then, the set of all empirical distributions of sequences in 2"
is denote as

Pz & {Pzn: 2" € Z”}

Specifically, given a type Q7 € ‘.]3721’, we use J¢, (or simply
Jq,) to denote the set of sequences =™ € Z" with the type
Qz, i.e.,

Tg, 2{z" €2 P = Qz}.
For a given 1 > 0, we also define
By 2 {2 €2 dna( P, Q2) <} (D)

Moreover, encoder f,, is called type-based, if its output
fn(z™) relies only on the type Py of the sequence z", for all
2™ € X™. Similarly, g, is type-based if g, (y™) is a function
of Pyn, for all y™ € Y™.

Furthermore, we use P, 2 PX x PY to denote the product
space of marginal distributions. For each ¢ = 0,1 and ¢t > 0,
we define the subsets D;(¢) of P, as

Di(t) £ {(Qx,Qy) € P: D (Qx,Qy) <t}, (8

where the function D] : P, — R is defined as

DI (Qx, A i D POy ©
F(Qx,Qy) oy (in (@xv|[Pxy): (9
[R@xv]y=Qv

where D(:||-) denotes the Kullback-Leibler (KL) divergence

between distributions. The following simple fact will be useful

in our analyses, of which a proof is provided in Appendix A.
Fact 1: For each i = 0,1, and ¢t > 0, D;(t) is convex.

In addition, several useful operations on P, are defined as
follows. For each given A C P, we define its projections
Mx(A) on PX and TIy-(A) on PY, as

Ix(A) £ {@x € P*: (Qx, Q%) € A for some Q3 € PY},
My (A) 2 {Qy € PY: (Q,Qy) € A for some Qy € P*1.

Then, we have the following definition.
Definition 3: The binary operator “>” on P, is defined such
that, for A, A’ C P,,

A A £ {(Qx,Qy) € A: Qx € TIx(A"), Qy € Ty (A")}.

In addition, for each k > 0, we define the operator “>;” as

AvoA 2 A, A A2 A, (10)

Ao A2 (A A) b (Abgy A) for k>0, (11)
We also define operators “3”, “C” as

Aéﬂlé{(Qx,Qy)GAI Qxenx(ﬂl)}, (12)

ALA 2{(Qx,Qy) € A: Qy €lly(A)}.  (13)

For sequences {an}n>1 and {b,},>1, we use a, = o(by,)
to indicate that lim,,_ . % = 0. We also define [M | £
{0,...,M —1} for M >1,and 72 1 — i for i € {0, 1}.

C. Characterizations on Decoders

Under finite-symbol compression regime, for a given n,
suppose that we have (||fnl|lgnll) = (Mx,My) with
Mx, My > 1. Without loss of generality, we assume the
corresponding message sets are Mg?) = [Mx] and ng’ ) =
[ My |, respectively. Then, the decoder ¢,, is a Boolean-valued
function on [Mx | x [My |, formalized as follows.

1) Decoder Representation and Special Decoders:

Definition 4: Given M x, My > 1, an M x x My decoder is
a function ¢ : [Mx | x [My] — {0,1}. For a given decoder
¢, its complement ¢ is defined as ¢ £ 1 — ¢. In addition, the
decision matrix associated with ¢ is defined as an My x Mx
Boolean matrix A with entries A(my,mx) = ¢(mx,my)
for all (mx,my) € [Mx]| x [My].

Specifically, the one-to-one correspondence between de-
coder ¢ and its associated decision matrix A is denoted by
¢+ A.

Several special decoders as then introduced as follows.

We call ¢ trivial if ¢ =0 or ¢ = 1, and call ¢ degenerated
if A < ¢ has duplicate rows or columns. In addition, we
call a decoder ¢ monotonic, if ¢p(mx,my) < ¢(m'y,my)
for all mx < m/y and my < m).. As an important example
of monotonic decoders, we introduce threshold decoders as
follows.

Definition 5: For given Mx, My > 1, the Mx x My
threshold decoders are the Mx x My decoder ppr, a, and
its complement s, s, , Where

A
PMx, My (va mY) = 1{mx+my2min{MX,My}}v

for all (mx,my) € [Mx| x [My].
For a given threshold decoder ¢, s, , the inputs mx €
[Mx |, my € [ My | can be regarded as discrete-valued beliefs



of node Nx and node Ny for H = 1, and the decision
Wy, My (Mx, my) is obtained, by first using a summation
to fuse the beliefs from two nodes, then comparing the fused
result mx + my to the threshold min{Mx, My }.

We will sometimes find it convenient to express a decision
matrix as filled grids of the same size, with occupied grids and
empty grids indicating “1” and “0”, respectively. For example,
when Mx = My = 2, the threshold decoders 32 and @3 2
as defined in Definition 5 can be represented as “Hy” and
“P®”, respectively.

For two given decoders ¢, ¢’ with decision matrices A <+ ¢
and A’ < ¢, we call ¢’ a subdecoder of ¢ if A’ is a submatrix
of A. In addition, ¢, ¢’ are called equivalent, denoted by ¢ ~
@', if A’ can be obtained from A by row permutations and
column permutations.

2) Reduction and Decomposition Operations: Then, we
introduce two important operations on decoders.

a) Decoder Reduction: Given a decision matrix A and
1 € {0,1}, its i-dominated rows (or columns) are defined as
the rows (or columns) being all ¢’s. Then, a decoder ¢ is called
reducible if A <+ ¢ has dominated rows or columns, and we
introduce reduction operations of ¢ as follows.

Definition 6: Given a non-trivial reducible decoder ¢ < A,
if A has i-dominated columns for ¢ € {0,1}, we define
decoder wgé)(qb) such that wgg) (¢) < Ag?, where Ag? denotes
the submatrix of A obtained by deleting its i-dominated
columns; similarly, if A has t-dominated rows, we define
wg/’)(qb) such that wgf)(d)) < Agﬁ), where Agf) is the submatrix
of A obtained by deleting i-dominated rows.

We refer to wg?),wg?,wg ),wg/l ) as elementary reduction
operators. Then, we define the elementary reduction operators
and their compositions as reduction operators. Given ¢ and
@', we say ¢ can be reduced to ¢, if @' = w(¢) for some
reduction operator w, or ¢’ = ¢. Moreover, a decoder ¢
is called completely reducible if it can be reduced to trivial
decoders.

b) Decoder Decomposition:

Definition 7: Given Mx, My > 1, an Mx x My de-
coder ¢ is called decomposable if there exist non-trivial
decoders ¢g,p1 € Fary.my and @ € {0,1}, such that for
all (mx,my) € [Mx] x [My],

d(mx,my) = ¢o(mx,my) @ ¢1(mx,my) ©7, (14)
and
19 (60) NP (1) =10 (0) N3P (61) =@, (15)

where “@®” represents the elementwise “exclusive or” opera-
tion, and where, for each Mx x My decoder ¢ and 7 € {0, 1},
we have defined

jg?(qﬁ) 2 {mX S [MxJ Elmly S [MyJ,Qb(TTLx,me) = Z}’

91(6) & {my € [My|: Imly € [Mx |, ¢(m'y,my) = i}.
(16)

Then, (14) is referred to as a decomposition of ¢.

3) Decoder Families: We use JFar a, to denote the
collection of all Mx x My decoders, and we define

F&

Mx21,My 21

Fnix, My (17)

as the collection of all decoders. Each subset of F is then
referred as a decoder family. For given P)(g)/, P)((lx), and decoder
family H C F, we use E[H] to denote the error exponent
region associated with I, defined as

E[H] & U E[p], forall H C F.
peIH

In addition, we have the following definition.

Definition 8: Given P)({O))/7 P)((I,)/ and decoders families
H,H C F, we use H < H' to indicate that E[H] C E[H].
Specifically, if H < H' for some H' C H, H’ is called
sufficient for .

The following simple fact is an immediate consequence of
the definition.

Fact 2: The relation “=<” is transitive, i.e., for all decoder
families Hy, H; and Ho, if Hy < H; and H; < Hoy, then
Ho = Hs. In addition, given Ho, H, C F with Hy < Hq, we
have (Ho UH') < (H; UH') for all H' C F.

D. Auxiliary Results

Several useful auxiliary results are listed as follows.
Lemma 1 ([13, Lemma 2.6, Lemma 2.12]): Given an

alphabet Z and n > 1, we have
‘93,%‘ < (n+ 1) (18)

In addition, suppose Z™ is i.i.d. generated from some Pz €
PZ, then for each Q7 € PZ, we have

(n+1)"* exp(—nD(Qz| Pz))

<P{Z"€T},} < exp(-nD(Qz||Pz)),  (19)
and, for each n > 0,
n _an 12|
IF’{Z GTPZW} 21_471172' (20)

Lemma 2 ([13, Lemma 5.1]): Given an alphabet Z, Py €
relint(P%), and a sequence {d,} of positive integers with
d, = o(n), there exists a sequence €, = o(1), such that for
all §; C 2", the sequence Z" are i.i.d. generated from P
satisfies

IP{Z” € Ngl"(SZ)} <P{Z" € 83} - exp(—ney)

where N¢ (-) denotes the Hamming d-neighborhood as defined
in Definition 2, and where relint(-) denotes the relative
interior.

Lemma 3 (Blowing up lemma [12], [13, Lemma 5.4]): Given
an alphabet Z and sequence ¢, = o(1), there exist a sequence
{d,} of positive integers with d,, = o(n), and a sequence
vn = o(1), such that for all given n > 1, 87 C 2", Py € P*,
and Z" i.i.d. generated from Py, if

P{Z" € 87} > exp(—ne,),



then
]P’{Z" € N;%;(sz)} >1— v,

III. MAIN RESULTS

In this section, we illustrate the geometric structure associ-
ated with DHT with constant-bit communication constraints,
and provide characterizations of the error exponent region.
Throughout our analyses, we assume that all entries of un-
derlying distributions are positive, i.e.,

P)((O})NP( ) ¢ relint(PX*Y), (21)

where relint(-) denotes the relative interior.

A. Optimality of Type-based Encoders

We first demonstrate that, the type-based encoders are
asymptotically optimal for the broader class of DHT problems
with zero-rate communication constraints, i.e., when || f,, || and
|lgn]| do not increase exponentially over n. To begin, we
introduce the following fact, a proof of which is provided in
Appendix B.

Fact 3: For each i € {0, 1}, under H = i, the probability of
observing sequences with marginal types (Qx,Qy) € fo
PY s

P{(Pxe, Pyo) = (@, Qy)[H =1}
= exp(—n(D; (Qx,Qy) + o(1))).

In addition, we have the following useful lemma. A proof
is provided in Appendix C.

Lemma 4: Given zero-rate encoders f, and g,, there exist
mappings 0x : P* — Mg?) and Oy : PY — Mgz), such that

P{fn(X") =0x(Qx),9n(Y") = Oy (Qy)[H = i}
> eXp(_n . (DT (QX7 QY) + En))

for i € {0,1} and (Qx,Qy) € PX x PY,
where D and Dj are as defined in (9).

Remark 1: From Fact 3, if H = i, the probability of qb-
serving sequences with marginal types (Qx,Qy) € PX x PV
is exp(—nD}(@Qx,Qy) + o(n)), which corresponds to the
right-hand side of (23). Therefore, Lemma 4 states that, each
zero-rate encoder pair (f,,g,) has similar behaviors as the
type-based encoders that map the observed sequences x™ and
y" t0 Ox (Pyn) and By (P,n), respectively.

Then, the following result establishes that, the performance
of DHT can be improved via replacing original encoders with
some type-based encoders, no matter what decoder is used.

Theorem 1: For a given n > 1 and zero-rate encoders f,
and g, with ranges M()?) and Mgf ), there exist type-based
encoders fm Jn, With the same ranges as f,, g, respectively,
such that, for each decoder ¢, : Mg?) X Mgf) — {0,1}, we

have

(22)

(23)

with ¢, = o(1),

7Ti(én) S Wz(en) : eXp(nCn)7

with ¢, = o(1), where we have defined the coding schemes
en é (fn;gnad)'n) and GI'L é (fn?g’IL?d)’fL)’

for i = 0,1,

Remark 2: The optimality of type-based decision in non-
distributed hypothesis testing can be established by a more
straightforward argument, see, e.g., [14, Lemma 3.5.3]. Specif-
ically, suppose 7 i.i.d samples ™ € X™ are generated by P)((H),
and f,,(z™) is used as our decision for H € {0,1}, where
Jn: X" — {0,1}. Then, there exists a type-based decision
fn: X™ — {0,1} such that

mi(fn) < 2-mi(fu),

where mo(-) and 71(-) denote the type-I error and type-II
error for corresponding decision functions, respectively. It is
also easy to verify that both Neyman—Pearson test [15] and
Hoeffding’s test [16] depend only on the types. In particular,
Neyman-Pearson test depends only on the empirical mean of

[17, Theorem 11.7.1].

for i € {0, 1},

0)
<1)§ ; see, e.g.,
And, when only P( ) is available but P(l) is unknown, the
resulting Hoeffdmg s test depends only on the KL, dlvergence
D(Pxn HP(O)) which is also a function of the type Pyn.

Proof: To begin, note that from Fact 3, there exists some
€n, = 0(1), such that for each i € {0,1}, we have

log-likelihood ratio log

P{X" €T3, Y" €T, [H=1i}
< exp(—n(D] (Qx, Qy) — €n)).

In addition, we construct the type-based encoders fn, Jn
such that

(24)

fn(xn) éQX(pz”)a gn(yn) éQY([DZ/")

for all 2™ € X™ and y™ € Y™, where 0x(-) and 0y (-) are as
defined in Lemma 4. We also define

72 {(Qx,Qy) € PX x PU: 6,(0x(Qx).0v(Qy)) # i}

for i =0,1 and n > 1.

Then, it can be verified that for given sequences 2" € X"
and y" € Y, we have ¢, (f(z"),d(y")) # i if and only
if (Pyn,Pyn) € T7. Therefore, the error of the type-based
coding scheme @, can be written as

7€) = P{6n(Ja(X"),Ga (™) # iH = i}
- P{(ﬁxmﬁyn) eT7|H= z}
= ) PXreT YreTy H=i}
(@x,Qy)ery

<y

(Qx,Qy)eTy

(25)

exp(—n - (D] (Qx,Qy) — €,)), (26)

where the inequality follows from (24).
If T'? is empty, then 7;(Cp,) = 0 < m;(C,,) is trivially true.
Otherwise, for each n > 1, let us define?

argmin D} (Qx,Qy),
(Qx,Qy)ery

Q) 2

X 27

3For convenience, the dependencies of Qg?, Q‘(;) on n are omitted from
the notations.



and from (26) we have

74(Cn) < (n+ 1) W exp(—nD(QY, Q) — en)
= exp(—n- (D} QY. QYY) — ), (28)

where the first inequality follows from the fact that
2] < [PF % P < (n+ D) (n+ )Y
= (n+ 1)+ (29)

and where
o, (X +19)logn+1)

/
n n
n

(30)

satisfies €}, = o(1). , ,
Moreover, from the definition (27) of Qg?, gf), we have

0n(0x(QY), 0 (@) # i.
As a result, from Lemma 4 we can obtain, for : = 0, 1,
i (Cr)
= P{on(fu(X"), gn(Y")) # i|H = i}
> P{fu(X") = 0x(QY), 9a (V™) = by (@) [H = i}
> exp(—n - (D} Q¥ QYY) +&) 31

with fff) = o(1). Therefore, from (28) and (31) we have,

i (Cp) < m(Cp) - exp(n¢,), fori=0,1,

where

o 2 en+ (€0 vED) =0(1).

B. Geometric Characterization

For DHT problem with communication constraints
(Onry, 0y ), we further illustrate that the error exponent
region £(0pr,,0n, ) can be characterized as a geometric
problem of separating two sets in P,. For convenience, in
the following discussions we will assume that Mx > My,
and the result for M x < My can be obtained by symmetry
arguments.

To begin, we introduce the following fact, of which a proof
is provide in Appendix D.

Fact 4: For all P)((O))/,P)((l}), € PXxY and Mx, My > 1, we
have

E(Orry > Onry ) = E[Fnry ary ] = E[H],

where H is any decoder family sufficient for Fps, ary (cf.
Definition 8).

Therefore, it suffices to construct a sufficient decoder family
J, and then investigate the region &[¢] for each ¢ € K.
Before discussing the construction of decoder families, we first
characterize the region &[¢] for each given ¢. To this end, the
notion of separability on P, will be useful.

Definition 9: Given Mx,My > 1 and a decoder ¢ €
F iy My » @ pair of disjoint subsets (Ao, A1) of P, is separable

11 Do(Ep) v D1 (Er)

Qx
b

(@) p2,2 and ¢33 (b) 3,2

Fig. 2. Geometric interpretation for achievable error exponent pairs under
different decoders, with each point representing a pair of marginal distributions

(Qx,Qy) € .

under ¢, if there exist mappings 0x: P* — [Mx]| and
0y : PY — [My |, such that for both i € {0, 1},

o(0x(Qx),0y(Qy)) =14, forall (Qx,Qy) € A,;.

Then, our main result is as follows. A proof is provided in
Appendix E.
Theorem 2: For each ¢ € &, we have

&Pl = {(Ev, E1): (Do(Ep), D1(F1)) is separable under ¢},

where Dy(-) and D;(-) are as defined in (8). In addition,
each exponent pair (Ep, E;) in the interior of &[¢] can
be achieved by the coding schemes {(f.,gn,®)}n>1 with
Fa(z™) 2 0x(Pun), gn(y™) 2 Oy (Pyn), where Ox and 6y
are as defined in Definition 9.

Remark 3: By using a similar argument, we can show
that under zero-rate communication constraints (Rx, Ry ) =
(0,0), the error exponent region is

8(0,0) = {(Eo,El)I Do(Eo) n Dl(El) = @},

(32)

(33)

which coincides with the classical results demonstrated in, e.g.,
[3, Theorem 6], [4, Theorem 5.5]. Furthermore, note that (33)
also corresponds to a limiting case of Theorem 2, and we have

E[H:M)(,MY] — {(EQ,El): QO(EO) ﬂDl(El) = @}

as MX — OO,MY —r OQ.

The relation between error exponent pair (Eo, Eq) and the
separability of (Dg(Ey), D1(E1)) is illustrated in Fig. 2. In
this figure, the z-axis and y-axis represent the marginal distri-
butions of X and Y, respectively, and each point corresponds
to a pair of marginal distributions (Qx,Qy) € P.. Let us
first consider the DHT problem with one-bit compression, with
p2,2 < Hg used as the decoder. Then, it can be easily verified
from Fig. 2a that (Do (Ep), D1(E1)) is separable under ¢ .
Therefore, it follows from Theorem 2 that (Ey, E1) € E[p2,2],
and thus for all € > 0, the error exponent pair (Ey — €, E)
is achievable under 9 2. Moreover, for all € > 0, Do(Ep + ¢)
is a strict superset of Do (Fy), making (Do(Eo +€), D1(F1))
inseparable under 5 ». Hence, with the type-II error exponent
E, fixed, Ey is the optimal type-I error exponent under ¢ .
In addition, when both nodes are allowed to transmit one-
trit messages with ¢33 <> [ used as the decoder, the



optimal type-I error exponent can be improved to Ejj > E,
as illustrated in the figure. Compared with the one-bit set-
ting, it can be noted that the two additional symbols are
used to encode the hatched area Do(E()>D1(F1), such that
(Do(E}), D1(E4)) is still separable, where the operator “»”
is as defined in Definition 3. Similarly, Fig. 2b illustrates the
geometric characterization when two nodes Nx and Ny have
one-trit and one-bit communication budgets, respectively, with
¢3,2 <> Hall used as the decoder.

The above geometric interpretations also suggest a recursive
property of the separability under threshold decoders. For
example, in Fig. 2b, (Dy(Ep), D1(F1)) is separable under
3.2, if and only if Dy(Ey) and D1(E1) & Do(Ey) (shown
in hatched) are separable under ¢ 2, Where “%” is as defined
in (12). Such recursive properties can be further generalized
as the following proposition, of which a proof is provided in
Appendix F.

Proposition 1: Suppose AO,AL C P, and ¢ is a reducible
decoder. For each i € {0, 1}, if wé? (¢) exists, then (Ag, Aq) is
separable under ¢ if and only if (Ag & Az, Ay & A;) is separable
under w$(¢). Similarly, if w\”(¢) exists, then (Ag,.A;) is
separable under ¢ if and only if (A & Az, A1 & As) is separable
under wgf)(gb), where “%” and “%” are as defined in (12) and
(13), respectively.

With Proposition 1, the error exponent region under thresh-
old decoders can be summarized as follows, of which a proof
is provided in Appendix G.

Theorem 3: Given Mx > My > 1, the error exponent
regions under Mx x My threshold decoders are

Elomx vy ] = {(Eo, E1): Do(Eo) >ary, Di(E1) = T},
E[@nmy my ] = {(Eo, E1): D1(E1)bary, Do(Eo) = 2}
if MX = My, and

Elpmx, My ] = E[Pnix, My ]
= {(Eo, E1): Do(Eo)>ury (D1(E1) 6 Do(Eo)) = @}

”” 6 X 9y

if Mx > My, where the operators “>” and “p

defined in Definition 3.
From Fact 4 and Theorem 3, we can readily obtain an inner
bound of £(0asy, 0, ) as

E(OIVT)(vOMY) = 8[$MX7MY]
D (E[pary ary | U E[@ary a1y ) -

arc as

(34)

This bound can be tight under certain circumstances, as we
will illustrate later.

In addition, the following result illustrates that, when the
communication constraint on one node is much stronger than
that on the other node, the performance of DHT is dominated
by this stronger constraint. A proof is provided in Appendix H.

Proposition 2: For given My > 1, Mx > 2My and Ry €
[0,00), we have

S(RX,OMY> == E(OMX7OZ\/[Y) == 8(02A4Y’OAIY)'

Therefore, without loss of generality we may assume that
My < My < 2Mv,

C. Construction of Sufficient Decoder Families

We then demonstrate a construction of sufficient decoder
families. As a first step, we partition the collection Far, ary
of Mx x My decoders as

Fare ity = Qax nry U Qnry aty s (35)

where we have defined

Qi vy = {0 € Fary ary ¢ ¢ is completely reducible},

Oty = Farenry \ Qasy, My - (36)

Then, we discuss the decoders in €57, a and QMX, My
separately.
For the decoders in Q7. s, , We have the following useful
characterization, a proof of which is provided in Appendix I.
Proposition 3: Let ¢ denote an Mx x My decoder with
Mx, My > 2. Then, the following statements are equivalent:
S1) ¢ is completely reducible;
S2) each 2 x 2 subdecoder of ¢ is reducible;
S3) there exists a monotonic decoder ¢’ such that ¢ ~ ¢’.

As an immediate consequence of Proposition 3, note that
the threshold decoders are monotonic decoders, and thus are
completely reducible. Furthermore, we have the following con-
sequence of Proposition 3, which demonstrates the sufficiency
of threshold decoders.

Lemma 5: For given Mx > My > 1, we have Qasy ary =
Dy My >, Where we have defined

DPrrg mty = {OMx My s Px My }- 37

A proof of Lemma 5 is provided in Appendix J, and makes
use of the following simple fact.

Fact 5: If ¢ ~ ¢/, then E[¢] = E[¢']. If ¢’ is a subdecoder
of ¢, then {¢'} = {9}.

Remark 4: If Mx > My, we have @ My =~ @PMy My
and it follows from Fact 5 that

Pury My = {PMx My PMx My } ZAPMx My }-

Therefore, the statement of Lemma 5 can be further refined
to QMXJWY < {QOJWX’]V[Y} for the case Mx > My.

Moreover, we have the following characterization for de-
coders in Qpry sy, @ proof of which is provided in Ap-
pendix K.

Proposition 4: For each decoder ¢ that is not completely
reducible, there exists a unique irreducible decoder ¢’ that
can be reduced from ¢.

Specifically, for each ¢ that is not completely reducible, we
refer to the ¢’ given by Proposition 4 as the reduced form of
¢, denoted by w*(¢). Then, we can further partition My, My
as

— — O (1
Qi My = QS\J)X,My U QSVI)X,MW (38)

where
QESLMY 2 {¢ € Qrry .ty - w*(¢) is indecomposable},

QS\}I)X,MY £ {¢ € Qary sy - W () is decomposable}. (39)



In addition, we have the following lemma, a proof of which
is provided in Appendix L.
Lemma 6: Given Mx > My > 1, we have ngl'f)x,My <

(Qary aay U Qg\(/)[))“My), where Q) is as defined in (37), and
where Q and Q) are as defined in (39).

By applying Lemma 5 and Lemma 6, the following theorem
provides a construction of sufficient decoder families.

Theorem 4: Given Mx > My > 1, the decoder family
Drry vy U QS&LMY is sufficient for Fpry a1y, where @ and
QO are as defined in (37) and (39), respectively.

Proof: From (35) and (38), we have

Frie, vy = Qi ,nry U QS\(/)[)X,JWY U QS\?X,MY (40)
= Qg omy U QS\(;)XJMY (4D
< Dor oy UQT) 1 (42)

where to obtain (41) we have used Lemma 5 and Fact 2, and
where to obtain (42) we have used Lemma 6. |

D. Error Exponent Regions

We then provide several conditions where the inner bound
(34) is tight, i.e., the threshold decoders @/, s, are sufficient
for Fpry m, - To this end, we first introduce the following
lemma, a proof of which is provided in Appendix M.

Lemma 7: Given Mx > My > 1 with (Mx — 2)(My —
2) < 2, we have

EOnx,0ny ) = Elomy my | U E[Prry 1ty ] (43)

From Lemma 7, it suffices to consider threshold decoders
for the one-bit compression settings with Mx > My = 2
and two-sided one-trit compression (Mx = My = 3). As a
straightforward corollary, we first revisit the two-sided one-bit
compression setting, i.e., Mx = My = 2, with the following
characterization of corresponding exponent region & (02, 0s).

Corollary 1 ([3, Theorem 5], [4, Theorem 5.6]): With one-
bit compression for both nodes, we have

€(02,02) = E[p2,2] U E[p2,],
where E[ps o] and E[@2 o] are as given by Theorem 3, and can
be represented as
E[p2,2] = {(Eo, £1): Do(Eop) N B1(E4) = @},
E[@2,2] = {(Eo, E1): Bo(Eo) N D1(EL) = @},

where for ¢ € {0,1} and t > 0, we have defined

B;(t) 2 {(Qx, Qv): D(Qx|PY) <t DQy|PY) < t}.

Remark 5: It has been shown in [3] that the same result can
be established when we relax the strict positive assumption
(1) to D(PE[| YY) < oo.

Similarly, the error exponent region with two-sided one-trit
compression is as follows.

Corollary 2: The exponent region of Mx = My = 3 is

€(03,03) = E[p33] U E[p3 3],

where E[ps 3] and €[p3 3] are as given by Theorem 3.

In addition, by combining Proposition 2 and Lemma 7, we
can establish the error exponent region for one-sided one-bit
compression.

Corollary 3: For all M > 3 and R € [0, 00), we have

S(R, 02) = S(OM,OQ) = 8(03,02) = 8[(,0372].

Remark 6: It is worth noting that in general we have
€(02,02) C &(03,02) = &E(R,02). Therefore, when one
distributed node can only transmit one bit, to obtain the
optimal performance, the other node is required to transmit
at least a one-trit message. This situation differs from the one
appeared in investigating the optimal type-II error exponent F/
with type-I error 7 constrained by a constant (cf. [2, Corollary
7]), where it requires only a one-bit message sent from the
other node to obtain the optimal performance.

Finally, when the observations at both nodes are condition-
ally independent given H = 0 or H = 1, the inner bound (34)
is tight for all Mx > My > 1, illustrated as follows. A proof
is provide in Appendix N. o

Theorem 5: Suppose P}, = PY P for some i € {0,1},
then we have

E(Onrx, Onry ) = Elonry iy | U E[Pary My |y

for all Mx > My > 1, where E[vnry . ay ] and E[@ary ]
are as given by Theorem 3.

APPENDIX A
PROOF OF FACT 1

Given o € (0,1) and i € {0,1}, for all (Qx,Qy) and
(Rx,Ry) € P, we have

Di(aQx + (1 — a)Rx,aQy + (1 — a)Qy)
< D(aQxy + (1 — a)Rxy | PE)

< aD(Qxv |PXY) + (1 — a)D(Rxv||PY})
=aD;(Qx,Qy) + (1 —a)D; (Rx, Ry),

where we have chosen Q xy and RXY such that

[Qxv]x = Qx.[Qxv]y = Qy, (44)
[Rxy]x = Rx,[Rxy]y = Ry, (45)
and
D(@Qxv|IPY)) = D} (Qx, Qy),
D(Rxy |[P{}) = D} (Rx, Ry).
||

APPENDIX B
PROOF OF FACT 3

_ To begin, for each given marginal type pair (Qx,Qy) €
PX x PY, let us define

R 2 {Qxy € PVY: [Qxv]x = Qx, [Qxv]y = Qv}
Rn 2 {Qxy € PXY: [Qxy]lx = Qx, [Qxv]y = Qy}-



and

EZ,)Y = arg min D(QXyHP)(g,) for i € {0,1}.

Qxy€ER

Then, under the hypothesis H = i € {0, 1}, the probabil-
ity of observing a sequence (X", Y"™) with marginal types
(Q@x,Qy) can be represented as

P{X" €T, Y" €T, |H=1i}

= Y P{X"Y")eTy, |H=i}
QXYejen
< Y en(-nDQxr[PH)

QXYEan

< ‘ZRH -exp(—nD;(Qx,Qy))
< |PX*Y| - exp(—nDi(Qx, Qy))

< (n+ DM exp(—nD! (Qx, Qy))
= exp(—n(D; (Qx,Qy) — €n)),

where (46) follows from (19), where (47) follows from the
definition of D} [cf. (9)], where (48) follows from (18), and
where we have defined

o Xzt 1)

n

(46)

(47)

(48)
(49)

(50)

In addition, for each i € {0, 1}, since R, is dense in R, there
exists Qg?l)/ € R, satisfying

o(1),

and it follows from the uniform continuity of KL divergence
that

DO ||P§§y>
— DY)

dinax (QY5, Q%) =

D7 (Qx,Qy)

LIPS = DQ PO < v (51

for some v, = o(1).
Therefore, we obtain
P{X" €T3, Y"€Th, |H=1i}

= Y P{X"Y")eTs,, |H=i}
QXYEan

> P {(X", Y") € Tho |H
> (n 4 1)~ -exp(—nD(Q%IIP%))

> (n+ 1) exp(—n(D} (Qx, Qy) + vn))
= exp(—n(D; (Qx,Qy) + vn + €n),

(52)
(53)
(54)

where to obtain (52) we have again used (19), to obtain (53)
we have used (51), and where ¢, is as defined in (50).
Finally, (22) is obtained via combining (49) and (54). W

APPENDIX C
PROOF OF LEMMA 4

_ For a given pair of marginal distributions (Qx, Qy) € PX
PY, we first define

8x £ {z" € X": fu(2") = 0x(Qx)},
Sy 2{y" €Y": gn(y") = 0y (Qy)}

and Sxy £ Sx X Sy, where for given f, and g,, we have
defined 6y : P* — Mg?) and Oy : P? — Mgf) such that for
all Py € PX and Py € PY,

Ox(Px) £ argmax P {fn,(X")

=mx|X" ~ P3"}, (55)
mXeMg;L)

Oy (Py) £ arg max P{gn(Y = my|Y" ~ P{?”} . (56)

myEM%:L)
By symmetry, it suffices to establish (23) for i = 0. To
this end, let (X™,Y™) be ii.d. generated from P)((O}),, and
we define Qxy € P**Y such that it satisfies [Qxy]x =

Qx.[Qxvly = Qv and D§(Qx.Qy) = D(@Qxv|Pxy).
Then, we can equivalently express (23) as

P{(Xn7yn) S Sxy}

> exp(—n - (D(Qxy |PYy) +e) (57

with €, = o(1).

We then illustrate that (57) holds, if there exists a sequence
of positive integers {l,,},>1 with l,, = o(n), such that for n
sufficiently large, we have

max v, (Qxy) > (58)

Qxvy€Qn

l\J\»—t

where for each n > 1 and QXY € j’% *9 we have defined

‘Ig?xy N Ni_f (Sxy)’

Y(Qxy) 2 (59)

with N (+) denotlng the Hamming d-neighborhood (cf. Defi-
nition 2), ,, = n~ 3, and

Q, = {QXY € PXY: dinax(Qxy, Qxy) < 77n}~ (60)
To see this, first note that from Lemma 2, we have
P{(X",Y") eS8xy}
> P{(X",Y") €N (Sxv) } - exp(—nel) (6D

for some €, = o(1).
Moreover, from (58), for sufficiently large n, there exists
Q'xy € 9, such that v, (Q%y) > % As a result, we have

IP’{(X”,Y”) € Nlﬁ‘(SXY)}
> P{(X’zY") € Tg, N Nl}’f’(SXY)}

—P{(x"Y") €T b n(@y)

1
> - P{(X”,Y") € :T”,Xy}

5 (62)



where the equality follows from the fact that different se-
quences within a type class are equiprobable.

In addition, it follows from the definition of Q,, [cf. (60)]
that dmax(Q’xy,®@xy) < n,. Hence, from the uniform
continuity of KL divergence, there exists €/, = o(1) such that

0 0
D@y IPR) = D@xy PR < el
This implies that

P{(XW7Y“)E§ijy}
> (n+ 1)~ exp(—nD(Qyy | X))

> (n+1)" N exp(—nel)) - exp(—nD(Qxv | PSy)).
(63)

where the first inequality follows from the lower bound in (19)
for probability of a type class, see, e.g., [17, Theorem 11.1.4]
or [13, Lemma 2.6].

Then, it can then be verified from (61), (62) and (63) that
(57) holds with

1 X
€n=¢, +er+—log2+ mlog(n—i— 1) = o(1).
n n
Hence, it remains to establish (58). To this end, we turn
to con~sider probabilities under the measure @)xy, and let
(X™,Y™) be i.i.d. generated from @) xy . Then, it follows from
Lemma 1 that

T 1]
dnn2 Ans
(64)

P {(X”,Y/") e Tgxymn} >

Moreover, from (55) we have
P {X" e sx} =P {fn(f(") = 9X(QX)}

SERWEE i
171 "

and, similarly, from (56) we have

(66)

5 1 .
]P’{Y" € Sy} > exp (—n- L?”f ”) :

Then, since f,, and g,, are with zero-rates, both L log || f, |
and I log|lg,|l vanish as n tends to infinity. Therefore, it
follows from Lemma 3 that there exist d, = o(n) and
v, = o(1), such that

IF’{X" e N;%In(sx)} >1— vy, 67)
P{Yf” c N;%;(sy)} > 1wy, (68)

where N¢ () denotes the d-Hamming neighborhood, as de-
fined in Definition 2.

Let I, £ 2d, = o(n), and it follows from the fact
N (8x) x N (Sy) € Ny (8x x 8y) = Nig (8xy) that

P{(X"77) € N (5xv))
>P {(Xn,if”) € N (8x) x N (sy)}
>P{X" e Nfr(8x)} +P{¥" e N (sy) } - 1

>1-2y,

=1-o(1), (69)

where the second inequality follows from the elementary fact
that, for two events F; and FE5,

P{E\NEy} =P{E} + P{Ey} —P{E, UEy}
>P{E1} +P{Ey} - 1. (70)
As a result, for sufficiently large n, we can obtain
X" V™) € T8y, NN (Sxv) )
>P{(X" V") € Ty, |
FE{(X" V") € N (8xv) )~ 1

> -, (71)

NN

Therefore, with Q,, as defined in (60), we obtain

_max %(QXY)
Qxy€Qn

= ) Z 'Yn(QXY) P{(Xn’i/n) € Tng}
Qxy€Qn
- Z IP’{(X’",?”) € ‘J’%XY ﬂNZ}’f’(SXY)}
Xy €9n
(X™Y™) €TH ym. NN (Sxy)}

Y% Il
o= K’ OO

; (72)
where to obtain the second equality we have used the fact that
1n(@xv) = P{(X",77) € Ny (8300)| (X7, 7 e 75}

and where the last equality follows from that

jgxyﬂh = LJ jgxy.
Qxvy€Qn
|
APPENDIX D

PROOF OF FACT 4

It suffices to prove the first equality, since the second
equality follows immediately from the definitions of &[] and
sufficient decoder families.



To this end, suppose (Eo, E1) € E(0nry,0nr, ), then for
each ¢ > 0, there exists a sequence of coding scheme
{€}n>1, such that [cf. (4)]

1
— lim —logm;(C,) = FE; —¢,

n—oo N

1=0,1, (73)
where each coding scheme C,, is equipped with some decoder
in Farye,my -

Note that since the set Fpr, a7, is finite, there exists a de-
coder ¢ € Fary m, and an infinite subsequence {my }x>1 of
positive integers, such that for each k£ > 1, the corresponding
coding scheme C,,, is equipped with ¢.

Moreover, we define a new sequence of coding scheme
e £ Cn, where k = k(n) £ max{k: mj < n}. It can
be verified that

1 1
— lim —logm;(€)) = —klim ;logm(@nk)
— o0

n—oo 1N
=F;—e¢ fori=0,1, (74)
which implies that (Ey, E7) € E[¢).
Therefore, we obtain
E(OMxvoMy) C U 8[¢] = E[EFMx,MY]' (75)

PET My, My

In addition, note that for each decoder ¢ € Ty my»
we have £[¢p] C E(Opry,0nr, ), which implies the reverse
inclusion

8[§MX;MY] C E(OMxvoMy)' (76)

From (75) and (76), we obtain €(0psy, Onry ) = E[Fary ary )
as desired. ]

APPENDIX E
PROOF OF THEOREM E

We first demonstrate that (Fy,Ey) €  &[p] if
(Do(Ey), D1(E1)) is separable under ¢. To this end,
we consider the error exponents associated with the
coding schemes {C,},>1 with €, = (f.,gn,¢), where
fu(z™) 2 0x(Pun), gn(y™) £ 0y (Pyn), and 0x and 0y are
the corresponding functions as defined in Definition 9 to
separate (Do(Ep), D1(E1)).

To begin, first note that from Fact 3, there exists some €,, =
o(1), such that for each 7 € {0, 1}, we have

P{X" €Ty, Y"€TH, |[H=1i}
<exp(—n(D; (Qx,Qy) — €n)). ()
In addition, for each ¢ = 0,1 and n > 1, let us define

72 {(Qx,Qy) € PX x PU: 6(0x(Qx),0v (Qy)) # i},
and it can be verified from Definition 9 that
Di (Qx,Qy) > E; (Qx,Qy) €T}

for all (78)

Therefore, the type-I error my and type-II error 7, can be
represented as

7i(€n) = P{0(0x (Pxn), Oy (Pyn)) #i[H = i}
= Y P{X"eTy Y"eTy [H=4)

(Q@x,Qv)ery
< > exp(-n- (D Qx,Qy) —€a)) (79)
(Q@x,Qvy)ery
< Z exp(—n(E; — €,)) (80)
(Q@x,Qv)eEry
< |7 - exp(—n(E; — €,)) (81)
< (n+ )X exp(—n(E; — €,)). (82)
<exp(—n(E; —€,)), (83)

where (79) follows from (77), (80) follows from (78), (83)
follows from (29), and where €, is as defined in (30).

Note that since €], = o(1), we obtain (Ey, E1) € E[¢].

In addition, we illustrate that for each (Ey, E1) € &[4,
(Do(Ep), D1(F4)) is separable under ¢. To this end, first
note that from Theorem 1, it suffices to consider coding
schemes C,, = (fn, gn, @) With type-based encoders f,,: =" >
ég?)(]szn) and §,: y" — HA&)(Pyn), where ég?'): PX
[Mx | and égf ) PY — [My | are the encoders for marginal
types.

Then, it can be verified that for n sufficiently large, the éﬁ?
and égl) satisfy that, for both i = 0,1, and each (Qx,Qy) €

$(05(Qx), 6" (Qy)) = i.

By symmetry, it suffices to establish (84) for the case ¢ =
0, which can be shown by contraction. Indeed, suppose that
there exists some (Qx, Qy) € Do(Eo) N (PX x P¥) such that
d)(égl)(QX),é&)(Qy)) = 1, then from Fact 3, there exists

some v, = o(1), such that the type-I error m(C,,) satisfies
mo(Ca) > P{X" € T3, Y™ € 75, |H =0}
= exp(—=n(Dp(Qx, Qy) + vn))

Therefore, the type-I error exponent is at most D (Qx, Qy),
which is strictly less than Ey, since (Qx,Qy) € D(Ep). This
contradicts the assumption (Ey, E1) € E[4)].

Furthermore, let us define functions ég?) : PXY - [Mx| and
6\ DY 5 [My | such that

0 (Qx) 2 057(QFY) and 677(Qv) £ 657 (QF)
for all Qx € P* and Qy € PY, where

Ag?) L arg min dmax(QlX’ QX)’

(84)

Qi ePX
Ag;’) 2 arg min dmax(Q/y» QY) (85)
Q4 ePy

Note that for each (Qx,Qy) € Do(Ey), we have
Dy(Qx,Qy) < Eo.



Note that from (85), we have

s Q). Qx) <~ and (@1, Q) <
and it follows from the uniform continuity of D that,
DR, Q) < Eo
for n sufficiently large.

This implies that (Q'",
Hence, from (84) we obtain

?

S|

W) € Do(Bo) N (PX x DY),

905" (Qx). 6, (Qv)) = 0. (86)
Similarly, we have
o(0%) (Qx). 67" (Qv)) = 1 (87)

for each (Qx,Qy) € D1(E1). From (86) and (87), Do(Ey)
and D1 (E1) is separable under ¢, which completes the proof.
| |

APPENDIX F
PROOF OF PROPOSITION 1

It suffices to consider the first statement for ¢ = 0, and other
cases can be similarly established. To this end, let A < ¢
and ¢/ £ wg?)(gb) “ Ag?) denote the associated decision
matrix of ¢ and the reduced decoder, as defined in Definition 6,
respectively. We also define

Ay &2 Agd Ay, and Af 2 A EA =A;. (88)

Without loss of generality, suppose the 0-dominated columns
of A are its last d columns, i.e., we have

p(mx,my) =0, (89)

foreach mx = Mx —d,...,Mx — 1 and my € [My|.
Moreover, it can be verified that ¢’ is the restriction of ¢
to [Mx — d] x [My |, and we have

@' (mx,my) = d(mx,my) (90)

for each (mX,my) S |—MX — dJ X |_MyJ

To prove the “only if” part of the claim, suppose (Ag, A1)
is separable under ¢. Then, from Definition 9, there exist
mappings Ox: PX¥ — [Mx]| and 6y : P? — [My ], such
that for both i € {0,1}, we have

o(0x(@x), 0y (Qy)) =i, forall (Qx,Qy) € Ai. (O1)

For each Qx € IIx(A;), it can be verified that Ox (Qx) €
[Mx —d]. Otherwise, there exists Q% € PY with (Qx, Q%) €
A1, and it follows from (89) that ¢(6x(Qx), 0y (Q%)) =0,
which contradicts the claim (91).

Then, we define 6': P* — [Mx — d] such that

0 (Qx) if Qx € Hx(Ay),

. 92)
0 otherwise,

0(Qx) = {

and it follows from (90) that, for each Q@x € IIx(A;) and
Qy € PY, we have

P(0x(Qx), 0y (Qy)) = ¢' (0% (Qx), 0y (Qy)).

Moreover, from (91) we have, for both i € {0, 1},

¢ (0% (Qx),0y(Qy)) =14, forall (Qx,Qy) € Aj, (93)

which implies that (Af,.A}) is separable under ¢'.

For the “if”” part of the claim, suppose (A{, A} ) is separable
under ¢, then there exist functions Oy: PX — [Mx —d] and
Oy : P? — [Mx — d], such that for both i € {0,1}, we have

¢'(0x(Qx),0y(Qy)) =1, forall (Qx,Qy) € Aj. (94)
Then, let us define 6": PX — [My | such that

From (89), for both ¢ € {0,1}, we have
0(0%(Qx), 0y (Qv)) =i, forall (Qx,Qy) € A, (96)
which implies that (Ag, A1) is separable under ¢. |

APPENDIX G
PROOF OF THEOREM 3

We first introduce several useful facts on the separability,
which can be readily verified from Definition 9.

Fact 6: Given A, A’ C P, and decoders ¢ ~ ¢', (A, A’) is
separable under ¢ if and only if it is separable under ¢’.

Fact 7: Given A, A’ C P,, (A, A’) is separable under ¢1 1
if and only if A’ = @.

Fact 8: For any given A, A’ C P, and ¢ € F, (A, A') is
separable under ¢ if and only if (A’,.A) is separable under its
complement .

The following corollary of Proposition 1 would also be
useful.

Corollary 4: Suppose A and A’ are two disjoint subsets of
P.. Given M > 2, the following statements are equivalent:

S1) (A, A’) is separable under ¢ ar;
S2) (A, A A’) is separable under wpr—1 ar—1;
S3) Apy A = 2.
In addition, for given Mx > My > 1, (A, A’) is separable
under @as, u, if and only if (A, A’ A) is separable under
P My, My -
Proof of Corollary 4: First, note that

PM—1,M—1 = W§9) (wE?)(wM,M)) .
Therefore, from Proposition 1, we have
S1 (A, A’) is separable under v ps
< (ABA',A’) is separable under w&?)(apM,M)
< ((AEA")EA',A") is separable under ¢ps—1,07—1

< (A A',A’) is separable under @ps_1 pr—1
< S2 (A, A A’) is separable under ppr—1 a1,

where the third “<=" follows from (AgA)E A" = A>A'.
To obtain the last “<—=", we have used Fact 8.



Then, by repeatedly applying the equivalence “S1 <=
S2” (M — 1) times, we know that statements S1 and S2 are
further equivalent to

(Avpr—1 A, Ay A') is separable under ¢ 1
— S3 ADN[.A/ =,
where we have used Fact 7.

Similarly, we can establish the second statement of the
claim, by noting that

(1)

OMy My =Wy (Pry .ty ),  for all My > My > 1.

|
Proceeding to the proof of Theorem 3, we first consider the
case Mx = My . From Theorem 2 we have

(EOaEl) € 8[‘:0MY7MY]
<= (Do(Ep),D1(En)) is separable under @z, sy
<~ fDo(Eo) >ar @1(E1) =y,

where the last “ <= " follows from Corollary 4. Then, it
follows from Fact 8§ that

(Eo,El) S 8[%01\/[},7]\43,} < @1(E1)I>M @0(E0) =
For the case Mx > My, it can be verified that

E[SDMX;MY] = S[SDMY“FLMY]
= &[Pmy +1.:y ] = E[PMx py ]
where the second equality follows from Fact 6 and that
OMy+1,My =~ PMy+1,My - 10 obtain the first equality, note
that the decision matrix associated with @7, . and that
associated with ¢pr, A, differ only in duplicated columns.

The last equality follows from symmetry considerations.
Then, from Theorem 2 and Corollary 4 we can obtain

(Eo, E1) € E[pnix,my ]
<= (Do(Ep), D1(E4)) is separable under par, ary
< (Do(Ep), D1(E1) 5 Do(Eo))
is separable under war, My
< Do(Eo)>ary (D1(E1)EDo(Ep)) =

which completes the proof. ]

APPENDIX H
PROOF OF PROPOSITION 2

First, we define Rpax = rnaux{H(P)((O))7 H(P)((l))} with
H (-) representing the entropy. Then, due to the inclusion chain

8(02]\/IY’OMY) C S(OMX,OMY)

- E(RX,OMY) C E(Rmax»OMy)a (97)

it suffices to demonstrate €(0g4,0a7, ) = E(Rmax, Onry )-
Specifically, note that under the constraints (Rmax, Opry )s
the decoder can obtain the full side information of the X
sequence. Then, for each n > 1, the corresponding coding
scheme can be characterized as a encoder g, that encodes
Y™, and a central decoder ¢, : X" x [My | — {0,1}. When

nodes N x and Ny observe sequences X" = z™ and Y" = y",
respectively, the decision at the center can be represented as

H = ¢n($nvgn(yn))'
Then, we introduce a new encoder f,: X"
encoding X", such that

23 gulam )2,
JE[My |

We also define decoder ¢': [2MY | x

— [2Mx | for
for all z" € X".

[My | — {0,1} as
¢'(mx,my) £ by, (mx,my) € [2"Y] x [My],

where for each j € [My |, b;j € {0,1} denotes the (j + 1)-th
digit of the binary representation of mx, such that

cbibg)y &> b2

JE[My |
It can beAveriﬁed that for each z™ € X™ and y" € Y, the
decision H’ associated with the coding scheme (f,,, gn,¢’) is

H' = ¢/ (fu(@"), 9u(y™)) = du(a", gu(y™)) = H.

Therefore, for each coding scheme under the rate constraints
(Rmax, Onry ), there exists a coding scheme satisfying con-
straints (0,14, 0p7, ) which obtains the same decision result.
Hence, we have &(Rpmax,0nr) C E(09n4-,0a7 ), and it
follows from (97) that €(0gas-,00r, ) = E(Rmax, Opry ). M

APPENDIX I
PROOF OF PROPOSITION 3

mx = (bary—1-

We would show the equivalences by separately establishing
“S1 — 8§27, “S2 — S3”, and “S3 — S1”.

First, for the claim “S1 =— S2”, note that there are two
irreducible 2 x 2 decoders, which we can denote by

o< Ao =gl and ¢ < A =My (93)

We then prove the claim by contradiction. Specifically, we
assume that ¢ <+ A has a irreducible subdecoder ¢q. Without
loss of generality, suppose A is the submatrix of A composed
of first two rows and first two columns of A. Then, it suffices
to show that ¢ is not completely reducible, which is trivially
true if ¢ is irreducible.

We now consider the case where ¢ is reducible. Then, there
exists an elementary reduction operator w, such that w(¢)
exists. Since the first two rows and first two columns of A
cannot be dominated, A is also a submatrix of A’ <> w(¢),
and thus ¢¢ is also a subdecoder of w(¢). As a consequence,
for all ¢’ that can be reduced from ¢, ¢q is a subdecoder of ¢/,
which implies that ¢ is not completely reducible. Similarly, ¢
is not completely reducible if ¢; is a subdecoder of ¢.

Then, to prove “S2 = S3”, note that for each decoder ¢,
we can construct its equivalent decoder ¢’ ~ ¢ such that the
functions ag?)(-) and agf )() are both non-decreasing, where
for each ¢ € s, M, , we have defined

Jg?)(mx) E Z qﬁ(??’LX/I’ny)7 Vmx € |—ij, (993)
myer]VIyJ

o my) 2 3 g(mx,my), Ymy € [My]. (99b)
mx€[Mx |



We then establish that ¢’ is monotonic if ¢ satisfies the
statement S2. To see this, first note that for all 0 < mx <
m'y < Mx, we have ox(mx) < ox(m'), which implies

>

my €[ My ]

[¢'(mx,my) — ¢'(m'x, my)] <0. (100)
Now, suppose ¢'(mx,my) — ¢'(m’yx,my) > 0 for some
my € [My]. Since the summation (100) is non-negative,
there exists m¥, € [My | with ¢/ (mx,mi ) —¢'(m'y,mi,) <
0. Therefore,

¢/<m;(7 mY) = Oa

¢I(m/X7m/Y) =1,

¢l(mX7mY) = 17
(z)/(vam/Y) =0,

which implies that ¢’ has an irreducible 2 x 2 subdecoder.
Thus, ¢ also has an irreducible 2 x 2 subdecoder, which
contradicts the statement S2.

As a consequence, we obtain

¢ (mx,my) —¢'(mx,my) <0

for all my € [My] and 0 < mx < m’x < My, and,
similarly,

¢'(mx,my) — ¢'(mx,my) <0

for all mx € [Mx] and 0 < my < m){ < My. This
demonstrates the statement S3.

Finally, to establish “S3 = S1”, note that for equivalent
decoders ¢ ~ ¢, ¢ is completely reducible if and only if
¢’ is completely reducible. Therefore, it suffices to show that
monotonic decoders are completely reducible. To this end, we
first show that the monotonic decoders are reducible. Indeed,
given a monotonic decoder ¢ € Fpr, My, it can be verified
from the definition that

o if p(Mx —1,0) =0, then ¢p(mx,0) =0 for all mx €

[Mx J;
o if (Mx —1,0) =1, then ¢(Mx — 1,my) = 1 for all
my € "MyJ

Therefore, ¢ is reducible.

Moreover, if ¢ is non-trivial, then there exists an elementary
reduction operator w, such that w(¢) exists. Then, it can be
verified that w(¢) is also monotonic, and we can similarly
apply reduction operations on w(¢) until obtaining trivial
decoders. This establishes the statement S1. [ |

APPENDIX J
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First, for all given Mx and My, we define

F i My £ {¢p € Fpry ary ¢ is monotonic}. (101)

Then, from Fact 5 and the equivalence of statements S1 and
S3 in Proposition 3, we obtain

S[QMX7MY] :8[ ]&X,My]' (102)

Therefore, it suffices to establish {¢} =< ®ps, ., for each
(b € T]I\/]Ix,My'

To this end, we first establish a useful expression of mono-
tonic decoders via using the functions agf)(~) and a§f’ )() as
defined in (99). In particular, for each ¢ € FJ; ;. , from
the definition of monotonicity we have, for all (mx,my) €

[Mx | x [My],

O my) =Lt myyznryy (109
= l{agéb)(mx)JrMYZMy}' (104)
If Mx > My, foreachmx € [Mx |, we have ag)(mx) €

[ Mx |. Then, it follows from (104) that, for all my € [My |,

¢(mX7 my) = 1{‘75?)(mx)+mYZMy}

(#)

(mx), my),

which implies that ¢ is a subdecoder of ¢as, ar, . Therefore,
from Fact 5 we obtain

{(b} = {SOMX,MY} = q)MX;MY'

For the case Mx = My, let M 2 My, then agﬁ)(j is
a non-decreasing function on [M]. If agj’ )() is not strictly
increasing, then there exists mi{ € [M — 1|, such that

() (¢)(m'y + 1), and from (103) we obtain

oy’ (my) =oy
d(mx,my) = ¢(mx,my +1), foral my € [M].

This implies that the mf-th and (mj} + 1)-th rows of the
associated decision matrix A <> ¢ are the same. Let A’ denote
the submatrix of A obtained by deleting its (m}- + 1)-th row.
Then, it can be verified that, the decoder ¢’ <+ A’ is an M x
(M — 1) monotonic decoder with E[¢] = E[¢'].

Therefore, we obtain

{6} 2 Fnr -1 2 H{emm—1} 2H{emm} 2 P,

where the second “=<” follows from (106), and where the third
“=<” follows from Fact 5 and that 7,371 is a subdecoder of
©M,M-

It remains to establish the claim for the case where Mx =
My = M and a§,¢ )() is strictly increasing on [M]. To this
end, first note that if Ug,@ (0) = 0, for each mx € [M]| we
have ¢(mx,0) = 0. Therefore, we have Ug?) (mx) € [M],
and it follows from (105)~(106) that {¢} < F} 5. Moreover,

if a§/¢ )() is strictly increasing and a§,¢ )(0) # 0, we have

(106)

agﬁb)(my) =my +1, forall my € [M].
Hence, from (103) we have, for all (mx,my) € [Mx] X
[My ],
p(mx,my) = Limytmy>M—1}
= LM —1-mx)+(M—1-my)<M-1}
= L1((M-1-mx)+(M—1-my)<M}
=pum(M—-1—mx, M —1—my),
which implies that ¢ >~ @as 7. As a result, we obtain
{6} = A{pm.m} = Poar o,

which completes the proof. [ ]
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To begin, we consider a decoder ¢ that is not completely
reducible. If ¢ is irreducible, it suffices to let ¢/ = ¢.
Otherwise, since ¢ cannot be reduced to trivial decoders, each
decoder reduced from ¢ is either an irreducible decoder, or a
non-trivial reducible decoder. Therefore, we can apply a series
of elementary reduction operators on ¢, until obtaining some
irreducible decoder.

It remains only to demonstrate the uniqueness of obtained
irreducible decoders. To see this, suppose both ¢ and ¢" are
the irreducible decoders obtained from the above procedures.

Note that since ¢’ is an irreducible subdecoder of ¢, its
associated rows and columns in the decision matrix A < ¢
cannot be dominated during the above reduction procedures.
Therefore, it is also a subdecoder of all decoders reduced from
6. ] ]

As a result, ¢ is a subdecoder of ¢”, and, similarly, ¢ is
a subdecoder of ¢'. Hence, we have ¢/ = ¢, corresponding
to the unique decoder ¢’ reduced from ¢. ]

APPENDIX L
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Our proof makes use of the notion of open sets in P,
together with discussions on the separability (cf. Definition 9)
under reducible and decomposable decoders.

As a first step, we define the open sets in P, as follows.
With slight abuse of notation, we use (QxQy to represent
(Rx,Qy) € P,. Then, we introduce the metric d, on P,,
such that for all given QxQy, Q% Q% € P4,

d*(QXQYv Q;{Q/Y)
£ max {dmax(QXv Q/X)7 dmax(QY’ Q/Y)} !

Moreover, A C P, is open, if for each @QxQy € A, there
exists 7 > 0, such that for all Q%Q} € P, satisfying
d (QxQy, Q% Q%) <n, we have Q' Q% € A.

Specifically, with assumption (21), the functions Dg(-) and
D7 (+) as defined in (9) are uniformly continuous, from which
we can obtain the following useful fact.

Fact 9: Suppose the assumption (21) holds. Then, for all
t>0and i€ {0,1}, D;(¢) is open.

To better illustrate the separability under reducible decoders,
we introduce notations as follows.

For given Ay, A1 C P, and a reduction operator w, we
define the sets 7;(Ag, A1;w) for ¢ = 0,1, such that for j €
{0,1} and 721 — 5,

Ti(Ao, A wi)) £ A A, (107a)
i(Ao, A wd)) £ A B A, (107b)

and, for each composite reduction operator w o w’,
7i(Ag, Ar;wow’) & 7, (Af, Al w), (108)

where A £ 7;(Ao, Ar;w’) for j € {0,1}.
Then, we have the following useful fact, which can be
verified by definition.

Fact 10: 1f Ay, A1 C P, are open and convex, then for all
reduction operator w and ¢ € {0, 1}, 7;(Ao, A1;w) is open and
convex.

The following fact, as an immediate consequences of Propo-
sition 1, is also useful.

Fact 11: Suppose ¢ is a reducible decoder and can be
reduced to 1) £ w(¢$) by some reduction operator w. Then,
for all Ag,A1 C P., (Ao, A1) is separable under ¢ if and
only if (79(Ao, A1;w), 71 (Ao, A1;w)) is separable under 1.

In addition, our proof will make use of the following result.

Lemma 8: Suppose ¢ is a decomposable decoder with the
decomposition [cf. (14)]

P=0do D1 DT

for some ¢ € {0,1}, where ¢ and ¢; satisfy (15). Suppose
Ao and A, are open convex subsets of P,. If (Ag, Ay) is
separable under ¢, then (Ag, A1) is separable under ¢, for
some j € {0,1}.

Proof of Lemma 8: By symmetry, it suffices to consider
the case where (109) holds for : =1, i.e.,

¢ =g D 1.

Since (Ag, A1) is separable under ¢, from Definition 9, there
exists fx : PX — [Mx | and 0y : P? — [My |, such that, we
have

(109)

(110)

(0x (Qx), 0y (Qy)) =0, forall (Qx,Qy) € Ao, (111)
and
¢(9x(Qx),0y(Qy)) =1, for all (Qx,Qy) c A, (112)

From (15) and (110), we have, for all (mx,my) € [Mx] X
[My |,

¢(mx,my) = max{go(mx,my), p1(mx,my)},

do(mx,my) - dp1(mx, my) = 0.

(113)
(114)

Therefore, we obtain, for each (Qx,Qy) € Ao,
Po(0x(Qx), 0y (Qy)) = ¢1(0x (Qx), 0y (Qy)) =0, (115)
and, for each (Qx,Qy) € A1,
Po(0x (R@x), 0y (Qy)) + ¢1(0x (R@x), 0y (Qy)) = 1.

Furthermore, we can demonstrate that, for either ¢ = 0 or
1=1,

¢Z(ex(Qx)79y(Qy)) = ]., for all (Qx,Qy) S Al.

(116)
To see this, we define, for 7 € {0,1},
AP 2 1(Qx,Qy) € Ar:
$i(0x(Qx), 0y (Qy)) = 1}, (117)

from which we obtain the partition A; = A{” U A{" with
A(lo) N Agl) = &. Then, it suffices to show that AY) = o for
1 =0 or ¢ = 1, which we will establish by contradiction.



To begin, suppose we have (Qx,Qy) € A§0) and
(vaQy) e AW, Then let us define sequences

{(Qx ) gf))}wo and {( QX ) @ }nzo such that

QY, Q) = (Qx,Qv), (QF,0) = (Qx,Qy).

Moreover, for each n > 0, we define

A(n A(n . A(n n 0
QY Qi) & {( &0y if (QF, Q%) e A,

X )Y

( ﬁ?), §f )) otherwise,
and
~N(n) Aln . A(n) Aln 0
G, gy & [, it Q. Q) € 4
oo ( E?), S/")), otherwise,

where we have defined

A(n 1 n ~(n A(n 1 n ~(n
QY 25V +QY). & 2@ + Q).

and we have ( Ag?), §7’) € A, due to the convexity of Aj.
Then, for each n > 0, it can be verified that

QY. Q") ea?”, QY. @\ eal, 1)
and
d, (QSQ“ .0 a)

Qe Qe ar )
0) ~(0) A(0) A(0
o (A00P.00aY)
1 S
= on - dy (QXQY;QXQY) .
As a result, we obtain

d, (QP QM QM)

il )
<d, (Q(")Q n) )Q(”))
< o (QxQv, GxQy) = ol1).

Since A; is open, for sufficiently large n we have

Q(}?)ng) € A;. Thus, it follows from (112) that
9(0x Q). 0y (QF)) = 1. (119)
In addition, from (117) and (118), we have
0x(QF") €95 (60) and 0y (QF”) €3 (61), (120)

where Jgp() and Jg})(-) are as defined in (16). This implies
that (cf. Definition 7)

¢(9X(

which contradicts (119).
Hence, we obtain (116) as desired. Finally, it follows from
(115) that (Ao, A;) is separable under ¢; for some j € {0,1}.
|
Our proof of Lemma 6 proceeds as follows. First, we define
a mapping x: F — N to indicate the reducibility of decoders.

&), 0y (QV)) =0,

Specifically, if ¢ is completely reducible, we let k(¢) = 0;
otherwise, suppose w*(¢) € Fr, 1, for some Lx,Ly > 2,
then we define x(¢) = min{Lx, Ly}, where w*(¢) denotes
the reduced form of ¢ as defined in Proposition 4.

If My = 1, we have QS\?X,MY C Qumymy = 9, and
Lemma 6 is trivially true. Thus, it suffices to consider the case
Mx, My > 2. In particular, we will show that, for each ¢ €
Q5 ary if (Eo, By) € €[], then there exists ¢/ € Fary ary
such that

(Eo, E1) € E]¢'] and k(') < k().

It can be shown that Lemma 6 can be readily obtained from
(121). Indeed, note that from (121), for each ¢ € QY. ),
and (Ey, E1) € E[¢], we can obtain some ¢’ satisfying (121).
Similarly, if ¢’ € Q M)x 1, » We can again apply (121) to obtain
an Mx x My decoder ¢ with r(¢") < k(¢') and (Eo, E1) €
E[¢"]. Since x(-) is non-negative, for each ¢ € Qg\?XJWY and
error exponent pair (Ep, E1) € E[¢], we can repeatedly apply
these procedures to obtain

(121)

~ -1 ~(0
¢ € Ty My \QSVI)X,MY = Qg My U qu)x,Myv

such that (Eg, E1) € &[], which demonstrates Lemma 6.

It remains only to establish (121). To this end, suppose
we have a decoder ¢ € QE&I)X,MY for some Mx, My > 2,
and an error exponent pair (Eg, E1) € &[¢]. Let ¥ = w*(¢)
denote the reduced form of ¢, as defined in Proposition 4.
Furthermore, suppose 1) can be reduced from ¢ by a reduction
operator w, i.e., ¥ = w(¢). Suppose ¥ € Fr 1, for some
Lx < Mx and Ly < My. Without loss of generality, we
assume that, for all (mx,my) € [Lx]| x [Ly],

PY(mx,my) = ¢(mx,my).

Then, for i € {0,1}, we define A; = D;(E;) and
Al & 7;(Ag, Ar;w), with 7; as defined in (107)~(108). Since
(Eo, Eq) € E[¢)], it follows from Theorem 2 that (A, A1) is
separable under ¢. From Fact 11, (A{,A}) is separable under
1.

Note that from Fact 1 and Fact 9, both .Ag and A, are convex
and open. Hence, it follows from Fact 10 that, A{, and A} are
also convex and open. Then, from the definition of ngl[)x My
[cf. (39)], ¥ is decomposable and has the decomposition

V=1 DY1 DI

for some i € {0, 1}, where o, 91 € FL 1, satisfy (15).

Hence, it follows from Lemma 8 that (Af, A}) is separable
under 1 or 9. Let us define ¢g, p1 € Fary ar,, such that,
for each j € {0,1},

(122)

o;(mx,my)

N {wj(mx,my) if (mx,my) S |—ij X |_LyJ,

¢(mx,my)  otherwise.

Then, it can be verified that (Ao, A1) is separable under ¢, or
¢1, which implies that (Ey, E1) € E[¢;] for some j € {0,1}.



Finally, from the definition of x(-), for both j € {0, 1},

K(85) = K (1) (123)
< min{ |9 ()], 9% ()]} (124)
<min{Lx, Ly} (125)
= k() = k(9), (126)

where J(;)(-) and Jg,l)(~) are as defined in (16), and where to
obtain the inequalities (124) and (125), we have used (15).
Hence, we obtain (121) as desired. [ |
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The following proposition is useful in our proof.
Proposition 5: If (Mx — 2)(My — 2) < 2, there exists
no Mx x My decoder that is both indecomposable and
irreducible.
Proof of Proposition 5: To begin, for each ¢ € Fpry sy,
we define the bipartite graph Gy = (U, V, E,) with the vertex
sets

U e {umX tmx € [ij},
and the edge sets
E¢ £ {(UmX,me)5 QS(vamY) = 1}7

where (U , Vi, ) Tepresents the undirected edge connecting
Upm and v, . This establishes the one-to-one correspondence
between decoders and bipartite graphs, and it can be verified
that, the decision matrix A associated with ¢ corresponds to
the biadjacency matrix of Gg.

We then illustrate that if ¢ is indecomposable and irre-
ducible, then both G4 and G are connected. To this end,
first note that since ¢ is irreducible, there exists no isolated
vertex in Gg.

Now, suppose Gg is disconnected and can be divided
into bipartite graphs G(© = (Up, Vp, E®) and GOV =
(Uh, V1, E(l)), with non-empty vertex sets Uy, Uy, Vy, V7 sat-
isfying

Vv £ {me3 my € (Myj}

U=Uyul,

V=WUh,

Let ¢y and ¢; be the decoders associated with G(©) and
G, respectively. Then, it can be verified that ¢ satisfies
(14) with ¢ = 0, and thus is decomposable, which contradicts
our assumption. Therefore, G is connected. Via a symmetry

argument, we can show that G is also connected.
Therefore, we obtain

|Es| 2 Ul +[V] =1
|Egl > U+ V] =1,

UsnNU; = @,
VoNnVy =o.

(127a)
(127b)
where we have used the simple fact that each connected graph

with k vertices has at least £ — 1 edges.
From (127), we obtain

Mx My = ‘E¢| + |E($|
>2(|U|+|V]=1) =2(Mx + My — 1),

which is equivalent to
(Mx —2)(My —2) > 2. (128)

As aresult, if (Mx —2)(My —2) < 2, no Mx x My decoder
is both indecomposable and irreducible.
|

Our proof of Lemma 7 proceeds as follows. First, for each
¢ € QJ\?X.MY’ let ¢ = w*(¢). Then, we have ¢ € Fr, 1,
for some Lx < Mx,Ly < My, and v is both irreducible
and indecomposable.

Note that if (Mx — 2)(My —2) < 2, we have (Lx —
2)(Ly —2) < 2. Then, it follows from Proposition 5 that such
1) does not exist. As a result, we have Qg\(})x My = 9.

Hence, from Theorem 4, ®,/, a, 1is sufficient for
Frry, My and thus

E(Onx s Onry ) = E[Fnax my | = E[Pary 1y ]
= E[QOMX-,MY] U 8[¢MX;MY]7
where the first equality follows from Fact 4. [ ]
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For given Mx, My, note that if Qpr, ary and Qary sy as
defined in (36) satisfy

Qi vty = Qi My s (129)
from Fact 2 we have
Frix iy = Qnae vty U Qi vy = Qarge My
and thus
EOnry s Onry ) = E[F e My ]| = E[Qniy 01y ] (130)
= &Py, My ) (131)

where the first equality follows from Fact 4, where the second
equality follows from (130) and Definition 8, and where the
last equality follows from Lemma 5.

Therefore, it suffices to establish (129). Note that if My =
1, then Qury a1y = @, and (130) is trivially true. We then
establish (129) for Mx > My > 2. To this end, we show that
for each ¢ € Q Mx, My, there exists ¢’ € Qar, ar,, such that
Elg] C E[].

To begin, note that from statement S2 of Proposition 3, ¢
has at least one irreducible 2 x 2 subdecoder [cf. (98)]. Without
loss of generality, we assume

$(0,0) = ¢(1,1) =0,

#(1,0) = ¢(1,0) = 1.
By symmetry, it suffices to consider the case

0 0) (0
PP = pOpO. (132)
Let ¢(© £ ¢, and suppose f,,: X" — [Mx] and g, : Y" —
[My | are some given encoders. Then, we define ¢(*) as
¢ (mx, my)

A {O if (mX7mY):(jX7jX)7

= 133
#© (mx,my) otherwise, (133)



where we have defined

jx £ argminP {f,(X") = j|H = 0}
j€{0,1}

(134)

and jx =1 — jx.

For k = 0,1, let € 2 (f,. ., 6®) denote the corre-
sponding coding schemes. Then, it can be verified that the
type-I and type-II errors for Gg,,l) satisfy

mo(CM) < 2 7o (CD), (135a)
1 (CM) < my (€D, (135b)
To establish (135a), note that
mo(C) — mo(Cl)
=P{(fn(X"),9n(Y")) = (jx,)x)|H = 0} (136)
=P{fo(X") =jx|H=0}P{g,(Y") = jx|H = 0}
(137)
S P{fn(X") =)xH=0}P{g.(Y") = jx|H =0}
(138)
=P{(fn(X"),9n(Y")) = (Jx,Jx)[H = 0} (139)
< (W), (140)

where (137) and (139) follow from (132), and where (138)
follows from (134).

Moreover, (141b) follows from the simple fact that, for all
(mx,my) S |—MxJ X [MyJ,

¢(1)(mX7my) =1 implies ¢(0)(mX7mY) =1

Furthermore, if ¢(") & Q. ar,, We can define ¢(?) similar
to (133). Similarly, for each k > 0, we define p(* 1) if ¢(¥) ¢
Qg My - Then, there exists k' < MxMy — 1, such that
o) € Qniy My -

To see this, it suffices to note that, for all £ > 0, we have

0< ny(¢(k)) = ny(gb(o)) — k< MxMy —1-k,

where we have defined, for each ¢ € T w1y,

Yoo D> blmx,my).

mx€[Mx ]| my€[My |

oxy(¢) £

In addition, similar to (133), for each k£ we have

mo(€F) < (k+1) - mo(€), (141a)
m(€F) < m(CD). (141b)

This implies that
mo(CX)Y < Mx My - 7o(C©)), (142a)

(€O, (142b)

(K + Dmo(e)) <
Wl(e( )) <7
Let ¢’ £ ¢(k/) € Qury My - Then, since the encoders f, and

gn can be arbitrarily chosen, from (142) we obtain E[¢'] C
&[¢], which completes the proof. |
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