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Abstract—In this paper, we consider the distributed hypothesis
testing (DHT) problem where two nodes are constrained to
transmit constant bits to a central decoder. In such cases, we show
that in order to achieve the optimal error exponents, it suffices to
consider the empirical distributions of observed data sequences
and encode them to the transmission bits. With such a coding
strategy, we develop a geometric approach in the distribution
spaces to show the optimal achievable error exponents and coding
scheme for the following cases: (i) both nodes can transmit
log2 3 bits; (ii) one of the nodes can transmit 1 bit, and the
other node is not constrained; (iii) the joint distribution of the
nodes are conditionally independent given one hypothesis. Our
approach essentially reveals new potentials for characterizing the
precise error exponents for DHT with general communication
constraints.

I. INTRODUCTION

The machine learning problems with distributed data have
gained much attentions recently in federated learning [1],
where the available data are observed at different nodes. The
central problem of distributed learning is to develop an effi-
cient learning scheme under communication or computation
constraints, for various learning tasks, such as label inference
or feature extraction. On the other hand, such problems have
also been extensively studied in information theory [2]–[5],
and the behaviors are typically much more complex than their
non-distributed counterparts.

In this paper, we investigate the distributed hypothesis
testing (DHT) problem as follows. Suppose that there are a
pair of random variables X,Y and joint distributions P (0)

XY

and P
(1)
XY . In addition, there are n samples i.i.d. generated

from either P (0)
XY or P (1)

XY , which may correspond to the two
hypothesis H = 0 and H = 1 in statistics, or different labels
in supervised learning problems. Moreover, in the distributed
setup, we assume that there are two nodes, referred to as node
NX and node NY , each observes only the n i.i.d. samples of
X and the samples of Y , respectively, and each node sends
an encoded message to a central decoder. Then, the decoder
makes a decision of the hypothesis Ĥ according to the received
messages. In particular, we focus on the case where both
NX and NY are required to encode (compress) the observed
length-n sequences to constant number of bits, due to limited
communication budgets. Our goal is to design the encoder
of each node and the central decoder to minimize the error
probability of inferring the label. Specifically, we focus on

the asymptotic regime such that n is large, and characterize
the error exponent pair for both type-I and type-II errors. The
rigorous mathematical formulation is presented in Section II.

The general framework of such multiterminal statistical
inference problems was first introduced in [6]. Then, the
DHT problem with full side information was formulated and
investigated in [7], where the sequence observed by NY can
be directly transmitted to the center, while NX can only
send messages at some positive rate. Following this work,
there have been a series of studies on DHT under different
settings of communication constraints, which are typically
represented as the communications rates, or equivalently, the
compression rates of the encoders. Specifically, the DHT
problem with zero-rate compression was first introduced in
[2], where the one-bit compression case was also discussed.
The achievable error exponent pairs under two-sided one-bit
compression were later established in [3]. The DHT problem
under zero-rate compression was also investigated in [8],
[9]. A comprehensive survey of representative works through
this line of researches can be found in [4]. Recently, the
studies on DHT are still fairly active, with new analyzing
tools and settings considered. For example, the DHT problem
under zero-rate communication constraints was revisited in
[5] from the perspectives of information-spectrum approach
and finite blocklength analysis, and the variant of DHT with
transmission noises was investigated in [10]. Despite of such
massive studies, the characterizations of DHT under general
communication constraints still remain open, except for several
special cases, e.g., two-sided one-bit compression (cf. [3]) and
zero-rate compression (cf. [4]).

The primary aim of this paper is to investigate the optimal
error exponent pairs of DHT with constant-bit communication
constraints, with the following main contributions. First, we
demonstrate that the optimal encoding scheme depends only
on the empirical distributions of the observed sequences, rather
than the sequences themselves, as long as the compression
rates are zeros. With such coding strategy, we develop a
geometric approach in the distribution spaces to characterize
the achievable error exponent pairs. Using this approach, we
further provide lower bounds for the error exponents, via
investigating the performance under a threshold decision rule.
In addition, we show that the lower bounds are tight and
establish the optimal error exponents, for the following cases:



(i) two-sided one-trit compression, where both nodes can
transmit one-trit (trinary digit) message; (ii) one-sided one-
bit compression, where one node can transmit one bit, and the
other node is not constraint; (iii) the nodes are conditionally in-
dependent given one hypothesis. Our characterization extends
previous studies on two-sided one-bit compression (cf. [3], [4])
and provides a novel geometric interpretation, which suggests
new potentials for error exponent region characterization of
DHT under general communication constraints.

II. PROBLEM FORMULATION AND PRELIMINARIES

In this section, we introduce the mathematical formulation
of DHT problem, and provide some useful definitions and
notations.

A. Problem Formulation
First, we assume both X and Y are discrete random

variables, taking values from finite alphabets X and Y, re-
spectively. Then, the general setup of DHT can be illustrated
as Fig. 1. When H = i, n i.i.d. sample pairs {(Xj , Yj)}nj=1

are generated from the joint distribution P (i)
XY , with node NX

observing Xn , (X1, . . . , Xn) and node NY observing Y n ,
(Y1, . . . , Yn), respectively. Then, nodes NX and NY compress
their observed sequences with the encoders fn : Xn → M

(n)
X

and gn : Yn → M
(n)
Y , respectively, which encode the ob-

served sequences into messages fn(Xn) and gn(Y n). The
encoded messages are further sent to a central machine,
which makes the decision Ĥ , φn(fn(Xn), gn(Y n)), with
φn : M

(n)
X ×M

(n)
Y → {0, 1} being used as the decoder.

Due to the limited communication budgets in practice, there
are typically constraints on the sizes of the message sets M(n)

X

and M
(n)
Y . Following the convention introduced in [4], we use

‖fn‖ ,
∣∣∣M(n)

X

∣∣∣ and ‖gn‖ ,
∣∣∣M(n)

Y

∣∣∣ to denote the cardinalities
of message sets, and express the constraints on ‖fn‖ and ‖gn‖
as a pair (RX , RY ), referred as the rate of encoders fn and
gn, with RX , RY ∈ [0,∞)∪{0M : M ≥ 1}. Specifically, each
RX ∈ [0,∞) indicates the constraint1

lim sup
n→∞

1

n
log ‖fn‖ ≤ RX , (1)

and each RX = 0M with M ≥ 1 indicates the constraint

lim sup
n→∞

‖fn‖ ≤M, (2)

namely, the encoded message fn(xn) is allowed to take
at most M distinct values2. Specifically, we refer to fn
(or gn) as a zero-rate encoder if it satisfies the constraint
RX = 0 (or RY = 0), and the corresponding hypothesis
testing setting is called the zero-rate compression regime. In
this paper, we focus on the DHT problem under constant-
bit communication constraints, also referred to as constant-bit
compression regime, where we have RX ∈ {0M : M ≥ 1} or
RY ∈ {0M : M ≥ 1}.

1Throughout, the logarithm log(·) indicates the natural logarithm with base
e, unless otherwise specified.

2For mathematical convenience, we allow M to take 1, where no informa-
tion can be transmitted from the node to center.

NXXn

NYY n

Center Ĥ = φn(fn(Xn), gn(Y n))

(Xn, Y n) ∼ P (H)
XY

fn(Xn)

gn(Y n)

Fig. 1. Distributed Hypothesis Testing Setup

Note that the coding scheme can be characterized as a
functional tuple Cn = (fn, gn, φn). For a given coding scheme
Cn, the performance can be characterized by the type-I error
π0(Cn) and type-II error π1(Cn), defined as

πi(Cn) , P
{
Ĥ 6= i

∣∣∣H = i
}
, (3)

for i = 0, 1, where P {·} denotes the probability with respect
to the corresponding i.i.d. sampling process over n sample
pairs.

In particular, we consider the asymptotic regime such that
n is large and characterize the achievable error exponents,
defined as follows.

Definition 1 (Error Exponent Region): Given a rate pair
(RX , RY ), an error exponent pair (E0, E1) is achievable under
(RX , RY ), if there exists a sequence of coding schemes {Cn =
(fn, gn, φn)}n≥1 such that the encoders fn and gn satisfy the
rate constraints (RX , RY ), and

lim
n→∞

1

n
log πi(Cn) = −Ei, i = 0, 1. (4)

Then, we define the error exponent region E(RX , RY ) as
the closure of the set of all achievable error exponent pairs
under the rate constraints. Specifically, under constant-bit
compression, if the coding schemes Cn’s in (4) have a common
decoder φ for all n ≥ 1, we call an error exponent pair
(E0, E1) is achievable under decoder φ. Then, we use E[{φ}]
(or simply E[φ]) to denote the closure of the set of all such
pairs.

Our goal is to characterize the error exponent region under
constant-bit compression regime and the coding schemes to
achieve the error exponents.

B. Definitions and Notations

Given an alphabet Z ∈ {X,Y,X×Y}, we use PZ to denote
the set of distributions supported on Z. For a given distribution
PZ ∈ PZ, we use (PZ)⊗n to denote the n-th product of PZ .
In addition, for PZ , QZ ∈ PZ, we introduce the metric

dmax(PZ , QZ) , max
z∈Z
|PZ(z)−QZ(z)|. (5)

For a joint distribution QXY ∈ PX×Y, the corresponding
marginal distributions are denoted by [QXY ]X ∈ PX and
[QXY ]Y ∈ PY. In particular, for each i = 0, 1, we denote
P

(i)
X , [P

(i)
XY ]X , P

(i)
Y , [P

(i)
XY ]Y .

A sequence (z1, . . . , zn) ∈ Zn is denoted by {zi}ni=1 or
simply zn. With slight abuse of notation, we use (xn, yn) or



simply xnyn to denote the sequence {(xi, yi)}ni=1 ∈ (X×Y)n,
and denote the set

{(xn, yn) : xn ∈ SX , y
n ∈ SY } ⊂ (X× Y)n (6)

by SX × SY , for given SX ⊂ Xn and SY ⊂ Yn.
We also introduce the definition of Hammingd-

neighborhood as follows.
Definition 2: The Hamming d-neighborhood of SZ ⊂ Zn is

Nd
H(SZ) , {zn ∈ Zn : dH(zn, z̃n) ≤ k for some z̃n ∈ SZ},

where dH(zn, z̃n) denotes the Hamming distance between
zn, z̃n ∈ Zn, i.e.,

dH(zn, z̃n) ,
1

n

n∑
i=1

1{zi 6=z̃i},

and where 1{·} denotes the indicator function.
For a given sequence zn ∈ Zn, we use P̂zn ∈ PZ to denote
its empirical distribution (type), defined as

P̂zn(z′) =
1

n

n∑
i=1

1{zi=z′} for all z′ ∈ Z.

Then, the set of all empirical distributions of sequences in Zn

is denote as

P̂Z
n ,

{
P̂zn : zn ∈ Zn

}
.

Specifically, given a type QZ ∈ P̂Z
n , we use TnQZ (or simply

TQZ ) to denote the set of sequences zn ∈ Zn with the type
QZ , i.e.,

TnQZ , {zn ∈ Zn : P̂zn = QZ}.

For a given η > 0, we also define

TnQZ ;η ,
{
zn ∈ Zn : dmax(P̂zn , QZ) ≤ η

}
. (7)

Moreover, encoder fn is called type-based, if its output
fn(xn) relies only on the type P̂xn of the sequence xn, for all
xn ∈ Xn. Similarly, gn is type-based if gn(yn) is a function
of P̂yn , for all yn ∈ Yn.

Furthermore, we use P? , PX × PY to denote the product
space of marginal distributions. For each i = 0, 1 and t > 0,
we define the subsets Di(t) of P? as

Di(t) , {(QX , QY ) ∈ P? : D∗i (QX , QY ) < t}, (8)

where the function D∗i : P? → R is defined as

D∗i (QX , QY ) , min
QXY : [QXY ]X=QX

[QXY ]Y =QY

D(QXY ‖P (i)
XY ), (9)

where D(·‖·) denotes the Kullback-Leibler (KL) divergence
between distributions. The following simple fact will be useful
in our analyses, of which a proof is provided in Appendix A.

Fact 1: For each i = 0, 1, and t ≥ 0, Di(t) is convex.

In addition, several useful operations on P? are defined as
follows. For each given A ⊂ P?, we define its projections
ΠX(A) on PX and ΠY (A) on PY, as

ΠX(A) , {QX ∈ PX : (QX , Q
′
Y ) ∈ A for some Q′Y ∈ PY},

ΠY (A) , {QY ∈ PY : (Q′X , QY ) ∈ A for some Q′X ∈ PX}.

Then, we have the following definition.
Definition 3: The binary operator “ .” on P? is defined such

that, for A,A′ ⊂ P?,

A .A′ , {(QX , QY ) ∈ A : QX ∈ ΠX(A′), QY ∈ ΠY (A′)}.

In addition, for each k ≥ 0, we define the operator “ .k” as

A .0 A
′ , A, A .1 A

′ , A′, (10)

A .k+2 A
′ , (A .k A

′) . (A .k+1 A
′) for k ≥ 0. (11)

We also define operators “X

.”, “Y

.” as

A X

.A
′ , {(QX , QY ) ∈ A : QX ∈ ΠX(A′)}, (12)

A Y

.A
′ , {(QX , QY ) ∈ A : QY ∈ ΠY (A′)}. (13)

For sequences {an}n≥1 and {bn}n≥1, we use an = o(bn)
to indicate that limn→∞

an
bn

= 0. We also define dMc ,
{0, . . . ,M − 1} for M ≥ 1, and ı̄ , 1− i for i ∈ {0, 1}.

C. Characterizations on Decoders

Under finite-symbol compression regime, for a given n,
suppose that we have (‖fn‖, ‖gn‖) = (MX ,MY ) with
MX ,MY ≥ 1. Without loss of generality, we assume the
corresponding message sets are M

(n)
X = dMXc and M

(n)
Y =

dMY c, respectively. Then, the decoder φn is a Boolean-valued
function on dMXc × dMY c, formalized as follows.

1) Decoder Representation and Special Decoders:
Definition 4: Given MX ,MY ≥ 1, an MX×MY decoder is

a function φ : dMXc × dMY c → {0, 1}. For a given decoder
φ, its complement φ̄ is defined as φ̄ , 1− φ. In addition, the
decision matrix associated with φ is defined as an MY ×MX

Boolean matrix A with entries A(mY ,mX) , φ(mX ,mY )
for all (mX ,mY ) ∈ dMXc × dMY c.

Specifically, the one-to-one correspondence between de-
coder φ and its associated decision matrix A is denoted by
φ↔ A.

Several special decoders as then introduced as follows.
We call φ trivial if φ ≡ 0 or φ ≡ 1, and call φ degenerated

if A ↔ φ has duplicate rows or columns. In addition, we
call a decoder φ monotonic, if φ(mX ,mY ) ≤ φ(m′X ,m

′
Y )

for all mX ≤ m′X and mY ≤ m′Y . As an important example
of monotonic decoders, we introduce threshold decoders as
follows.

Definition 5: For given MX ,MY ≥ 1, the MX × MY

threshold decoders are the MX ×MY decoder ϕMX ,MY
and

its complement ϕ̄MX ,MY
, where

ϕMX ,MY
(mX ,mY ) , 1{mX+mY ≥min{MX ,MY }},

for all (mX ,mY ) ∈ dMXc × dMY c.
For a given threshold decoder ϕMX ,MY

, the inputs mX ∈
dMXc,mY ∈ dMY c can be regarded as discrete-valued beliefs



of node NX and node NY for Ĥ = 1, and the decision
ϕMX ,MY

(mX ,mY ) is obtained, by first using a summation
to fuse the beliefs from two nodes, then comparing the fused
result mX +mY to the threshold min{MX ,MY }.

We will sometimes find it convenient to express a decision
matrix as filled grids of the same size, with occupied grids and
empty grids indicating “1” and “0”, respectively. For example,
when MX = MY = 2, the threshold decoders ϕ2,2 and ϕ̄2,2

as defined in Definition 5 can be represented as “ ” and
“ ”, respectively.

For two given decoders φ, φ′ with decision matrices A↔ φ
and A′ ↔ φ′, we call φ′ a subdecoder of φ if A′ is a submatrix
of A. In addition, φ, φ′ are called equivalent, denoted by φ '
φ′, if A′ can be obtained from A by row permutations and
column permutations.

2) Reduction and Decomposition Operations: Then, we
introduce two important operations on decoders.

a) Decoder Reduction: Given a decision matrix A and
i ∈ {0, 1}, its i-dominated rows (or columns) are defined as
the rows (or columns) being all i’s. Then, a decoder φ is called
reducible if A↔ φ has dominated rows or columns, and we
introduce reduction operations of φ as follows.

Definition 6: Given a non-trivial reducible decoder φ↔ A,
if A has i-dominated columns for i ∈ {0, 1}, we define
decoder ω(i)

X (φ) such that ω(i)
X (φ)↔ A

(i)
X , where A

(i)
X denotes

the submatrix of A obtained by deleting its i-dominated
columns; similarly, if A has i-dominated rows, we define
ω

(i)
Y (φ) such that ω(i)

Y (φ)↔ A
(i)
Y , where A

(i)
Y is the submatrix

of A obtained by deleting i-dominated rows.
We refer to ω

(0)
X , ω

(1)
X , ω

(0)
Y , ω

(1)
Y as elementary reduction

operators. Then, we define the elementary reduction operators
and their compositions as reduction operators. Given φ and
φ′, we say φ can be reduced to φ′, if φ′ = ω(φ) for some
reduction operator ω, or φ′ = φ. Moreover, a decoder φ
is called completely reducible if it can be reduced to trivial
decoders.

b) Decoder Decomposition:
Definition 7: Given MX ,MY ≥ 1, an MX × MY de-

coder φ is called decomposable if there exist non-trivial
decoders φ0, φ1 ∈ FMX ,MY

and i ∈ {0, 1}, such that for
all (mX ,mY ) ∈ dMXc × dMY c,

φ(mX ,mY ) = φ0(mX ,mY )⊕ φ1(mX ,mY )⊕ ı̄, (14)

and

I
(i)
X (φ0) ∩ I

(i)
X (φ1) = I

(i)
Y (φ0) ∩ I

(i)
Y (φ1) = ∅, (15)

where “⊕” represents the elementwise “exclusive or” opera-
tion, and where, for each MX×MY decoder φ and i ∈ {0, 1},
we have defined

I
(i)
X (φ) , {mX ∈ dMXc : ∃m′Y ∈ dMY c, φ(mX ,m

′
Y ) = i},

I
(i)
Y (φ) , {mY ∈ dMY c : ∃m′X ∈ dMXc, φ(m′X ,mY ) = i}.

(16)

Then, (14) is referred to as a decomposition of φ.

3) Decoder Families: We use FMX ,MY
to denote the

collection of all MX ×MY decoders, and we define

F ,
⋃

MX≥1,MY ≥1

FMX ,MY
(17)

as the collection of all decoders. Each subset of F is then
referred as a decoder family. For given P (0)

XY , P
(1)
XY and decoder

family H ⊂ F, we use E[H] to denote the error exponent
region associated with H, defined as

E[H] ,
⋃
φ∈H

E[φ], for all H ⊂ F.

In addition, we have the following definition.
Definition 8: Given P

(0)
XY , P

(1)
XY and decoders families

H,H′ ⊂ F, we use H � H′ to indicate that E[H] ⊂ E[H′].
Specifically, if H � H′ for some H′ ⊂ H, H′ is called
sufficient for H.

The following simple fact is an immediate consequence of
the definition.

Fact 2: The relation “�” is transitive, i.e., for all decoder
families H0,H1 and H2, if H0 � H1 and H1 � H2, then
H0 � H2. In addition, given H0,H1 ⊂ F with H0 � H1, we
have (H0 ∪H′) � (H1 ∪H′) for all H′ ⊂ F.

D. Auxiliary Results

Several useful auxiliary results are listed as follows.
Lemma 1 ( [13, Lemma 2.6, Lemma 2.12]): Given an

alphabet Z and n ≥ 1, we have∣∣∣P̂Z
n

∣∣∣ ≤ (n+ 1)|Z|. (18)

In addition, suppose Zn is i.i.d. generated from some PZ ∈
PZ, then for each QZ ∈ P̂Z

n , we have

(n+ 1)−|Z| · exp(−nD(QZ‖PZ))

≤ P
{
Zn ∈ TnQZ

}
≤ exp(−nD(QZ‖PZ)), (19)

and, for each η > 0,

P
{
Zn ∈ TnPZ ;η

}
≥ 1− |Z|

4nη2
. (20)

Lemma 2 ([13, Lemma 5.1]): Given an alphabet Z, PZ ∈
relint(PZ), and a sequence {dn} of positive integers with
dn = o(n), there exists a sequence εn = o(1), such that for
all SZ ⊂ Zn, the sequence Zn are i.i.d. generated from PZ
satisfies

P
{
Zn ∈ Ndn

H (SZ)
}
≤ P {Zn ∈ SZ} · exp(−nεn)

where Nd
H(·) denotes the Hamming d-neighborhood as defined

in Definition 2, and where relint(·) denotes the relative
interior.

Lemma 3 (Blowing up lemma [12], [13, Lemma 5.4]): Given
an alphabet Z and sequence εn = o(1), there exist a sequence
{dn} of positive integers with dn = o(n), and a sequence
νn = o(1), such that for all given n ≥ 1, SZ ⊂ Zn, PZ ∈ PZ,
and Zn i.i.d. generated from PZ , if

P {Zn ∈ SZ} ≥ exp(−nεn),



then

P
{
Zn ∈ Ndn

H (SZ)
}
≥ 1− νn.

III. MAIN RESULTS

In this section, we illustrate the geometric structure associ-
ated with DHT with constant-bit communication constraints,
and provide characterizations of the error exponent region.
Throughout our analyses, we assume that all entries of un-
derlying distributions are positive, i.e.,

P
(0)
XY , P

(1)
XY ∈ relint(PX×Y), (21)

where relint(·) denotes the relative interior.

A. Optimality of Type-based Encoders

We first demonstrate that, the type-based encoders are
asymptotically optimal for the broader class of DHT problems
with zero-rate communication constraints, i.e., when ‖fn‖ and
‖gn‖ do not increase exponentially over n. To begin, we
introduce the following fact, a proof of which is provided in
Appendix B.

Fact 3: For each i ∈ {0, 1}, under H = i, the probability of
observing sequences with marginal types (QX , QY ) ∈ P̂X

n ×
P̂Y
n is

P
{

(P̂Xn , P̂Y n) = (QX , QY )
∣∣∣H = i

}
= exp(−n(D∗i (QX , QY ) + o(1))). (22)

In addition, we have the following useful lemma. A proof
is provided in Appendix C.

Lemma 4: Given zero-rate encoders fn and gn, there exist
mappings θX : PX →M

(n)
X and θY : PY →M

(n)
Y , such that

P {fn(Xn) = θX(QX), gn(Y n) = θY (QY )|H = i}
≥ exp(−n · (D∗i (QX , QY ) + εn)), (23)

for i ∈ {0, 1} and (QX , QY ) ∈ P̂X
n × P̂Y

n, with εn = o(1),
where D∗0 and D∗1 are as defined in (9).

Remark 1: From Fact 3, if H = i, the probability of ob-
serving sequences with marginal types (QX , QY ) ∈ P̂X

n × P̂Y
n

is exp(−nD∗i (QX , QY ) + o(n)), which corresponds to the
right-hand side of (23). Therefore, Lemma 4 states that, each
zero-rate encoder pair (fn, gn) has similar behaviors as the
type-based encoders that map the observed sequences xn and
yn to θX(P̂xn) and θY (P̂yn), respectively.

Then, the following result establishes that, the performance
of DHT can be improved via replacing original encoders with
some type-based encoders, no matter what decoder is used.

Theorem 1: For a given n ≥ 1 and zero-rate encoders fn
and gn with ranges M

(n)
X and M

(n)
Y , there exist type-based

encoders f̃n, g̃n with the same ranges as fn, gn, respectively,
such that, for each decoder φn : M

(n)
X ×M

(n)
Y → {0, 1}, we

have

πi(C̃n) ≤ πi(Cn) · exp(nζn), for i = 0, 1,

with ζn = o(1), where we have defined the coding schemes
Cn , (fn, gn, φn) and C̃n , (f̃n, g̃n, φn).

Remark 2: The optimality of type-based decision in non-
distributed hypothesis testing can be established by a more
straightforward argument, see, e.g., [14, Lemma 3.5.3]. Specif-
ically, suppose n i.i.d samples xn ∈ Xn are generated by P (H)

X ,
and fn(xn) is used as our decision for H ∈ {0, 1}, where
fn : Xn → {0, 1}. Then, there exists a type-based decision
f̃n : Xn → {0, 1} such that

πi(f̃n) ≤ 2 · πi(fn), for i ∈ {0, 1},

where π0(·) and π1(·) denote the type-I error and type-II
error for corresponding decision functions, respectively. It is
also easy to verify that both Neyman–Pearson test [15] and
Hoeffding’s test [16] depend only on the types. In particular,
Neyman–Pearson test depends only on the empirical mean of
log-likelihood ratio log

P
(0)
X (x)

P
(1)
X (x)

, see, e.g., [17, Theorem 11.7.1].

And, when only P
(0)
X is available but P (1)

X is unknown, the
resulting Hoeffding’s test depends only on the KL divergence
D
(
P̂xn

∥∥P (0)
X

)
, which is also a function of the type P̂xn .

Proof: To begin, note that from Fact 3, there exists some
εn = o(1), such that for each i ∈ {0, 1}, we have

P
{
Xn ∈ TnQX , Y

n ∈ TnQY |H = i
}

≤ exp(−n(D∗i (QX , QY )− εn)). (24)

In addition, we construct the type-based encoders f̃n, g̃n
such that

f̃n(xn) , θX(P̂xn), g̃n(yn) , θY (P̂yn) (25)

for all xn ∈ Xn and yn ∈ Yn, where θX(·) and θY (·) are as
defined in Lemma 4. We also define

Γni , {(QX , QY ) ∈ P̂X
n × P̂Y

n : φn(θX(QX), θY (QY )) 6= i}

for i = 0, 1 and n ≥ 1.
Then, it can be verified that for given sequences xn ∈ Xn

and yn ∈ Yn, we have φn(f̃(xn), g̃(yn)) 6= i if and only
if (P̂xn , P̂yn) ∈ Γni . Therefore, the error of the type-based
coding scheme C̃n can be written as

πi(C̃n) = P
{
φn(f̃n(Xn), g̃n(Y n)) 6= i

∣∣∣H = i
}

= P
{

(P̂Xn , P̂Y n) ∈ Γni

∣∣∣H = i
}

=
∑

(QX ,QY )∈Γni

P
{
Xn ∈ TnQX , Y

n ∈ TnQY

∣∣H = i
}

≤
∑

(QX ,QY )∈Γni

exp(−n · (D∗i (QX , QY )− εn)), (26)

where the inequality follows from (24).
If Γni is empty, then πi(C̃n) = 0 ≤ πi(Cn) is trivially true.

Otherwise, for each n ≥ 1, let us define3

(Q
(i)
X , Q

(i)
Y ) , arg min

(QX ,QY )∈Γni

D∗i (QX , QY ), (27)

3For convenience, the dependencies of Q
(i)
X , Q

(i)
Y on n are omitted from

the notations.



and from (26) we have

πi(C̃n) ≤ (n+ 1)|X|+|Y| exp(−nD∗i (Q
(i)
X , Q

(i)
Y )− εn)

= exp(−n · (D∗i (Q
(i)
X , Q

(i)
Y )− ε′n)), (28)

where the first inequality follows from the fact that

|Γni | ≤
∣∣∣P̂X
n × P̂Y

n

∣∣∣ ≤ (n+ 1)|X| · (n+ 1)|Y|

= (n+ 1)|X|+|Y|, (29)

and where

ε′n , εn +
(|X|+ |Y|) log(n+ 1)

n
(30)

satisfies ε′n = o(1).
Moreover, from the definition (27) of Q(i)

X , Q
(i)
Y , we have

φn(θX(Q
(i)
X ), θY (Q

(i)
Y )) 6= i.

As a result, from Lemma 4 we can obtain, for i = 0, 1,

πi(Cn)

= P {φn(fn(Xn), gn(Y n)) 6= i|H = i}

≥ P
{
fn(Xn) = θX(Q

(i)
X ), gn(Y n) = θY (Q

(i)
Y )
∣∣∣H = i

}
≥ exp(−n · (D∗i (Q

(i)
X , Q

(i)
Y ) + ξ(i)

n ) (31)

with ξ(i)
n = o(1). Therefore, from (28) and (31) we have,

πi(C̃n) ≤ πi(Cn) · exp(nζn), for i = 0, 1,

where

ζn , εn + (ξ(0)
n ∨ ξ(1)

n ) = o(1).

B. Geometric Characterization

For DHT problem with communication constraints
(0MX

, 0MY
), we further illustrate that the error exponent

region E(0MX
, 0MY

) can be characterized as a geometric
problem of separating two sets in P?. For convenience, in
the following discussions we will assume that MX ≥ MY ,
and the result for MX < MY can be obtained by symmetry
arguments.

To begin, we introduce the following fact, of which a proof
is provide in Appendix D.

Fact 4: For all P (0)
XY , P

(1)
XY ∈ PX×Y and MX ,MY ≥ 1, we

have

E(0MX
, 0MY

) = E[FMX ,MY
] = E[H],

where H is any decoder family sufficient for FMX ,MY
(cf.

Definition 8).
Therefore, it suffices to construct a sufficient decoder family

H, and then investigate the region E[φ] for each φ ∈ H.
Before discussing the construction of decoder families, we first
characterize the region E[φ] for each given φ. To this end, the
notion of separability on P? will be useful.

Definition 9: Given MX ,MY ≥ 1 and a decoder φ ∈
FMX ,MY

, a pair of disjoint subsets (A0,A1) of P? is separable

D0(E0)

D0(E′0)

D1(E1)

D0(E′0) .D1(E1)QX

QY

(a) ϕ2,2 and ϕ3,3

D0(E0)

D1(E1)

D1(E1)
X
.D0(E0)QX

QY

(b) ϕ3,2

Fig. 2. Geometric interpretation for achievable error exponent pairs under
different decoders, with each point representing a pair of marginal distributions
(QX , QY ) ∈ P?.

under φ, if there exist mappings θX : PX → dMXc and
θY : PY → dMY c, such that for both i ∈ {0, 1},

φ(θX(QX), θY (QY )) = i, for all (QX , QY ) ∈ Ai. (32)

Then, our main result is as follows. A proof is provided in
Appendix E.

Theorem 2: For each φ ∈ F, we have

E[φ] = {(E0, E1) : (D0(E0),D1(E1)) is separable under φ},

where D0(·) and D1(·) are as defined in (8). In addition,
each exponent pair (E0, E1) in the interior of E[φ] can
be achieved by the coding schemes {(fn, gn, φ)}n≥1 with
fn(xn) , θX(P̂xn), gn(yn) , θY (P̂yn), where θX and θY
are as defined in Definition 9.

Remark 3: By using a similar argument, we can show
that under zero-rate communication constraints (RX , RY ) =
(0, 0), the error exponent region is

E(0, 0) = {(E0, E1) : D0(E0) ∩D1(E1) = ∅}, (33)

which coincides with the classical results demonstrated in, e.g.,
[3, Theorem 6], [4, Theorem 5.5]. Furthermore, note that (33)
also corresponds to a limiting case of Theorem 2, and we have

E[FMX ,MY
]→ {(E0, E1) : D0(E0) ∩D1(E1) = ∅}

as MX →∞,MY →∞.
The relation between error exponent pair (E0, E1) and the

separability of (D0(E0),D1(E1)) is illustrated in Fig. 2. In
this figure, the x-axis and y-axis represent the marginal distri-
butions of X and Y , respectively, and each point corresponds
to a pair of marginal distributions (QX , QY ) ∈ P?. Let us
first consider the DHT problem with one-bit compression, with
ϕ2,2 ↔ used as the decoder. Then, it can be easily verified
from Fig. 2a that (D0(E0),D1(E1)) is separable under ϕ2,2.
Therefore, it follows from Theorem 2 that (E0, E1) ∈ E[ϕ2,2],
and thus for all ε > 0, the error exponent pair (E0 − ε, E1)
is achievable under ϕ2,2. Moreover, for all ε > 0, D0(E0 + ε)
is a strict superset of D0(E0), making (D0(E0 + ε),D1(E1))
inseparable under ϕ2,2. Hence, with the type-II error exponent
E1 fixed, E0 is the optimal type-I error exponent under ϕ2,2.
In addition, when both nodes are allowed to transmit one-
trit messages with ϕ3,3 ↔ used as the decoder, the



optimal type-I error exponent can be improved to E′0 > E0,
as illustrated in the figure. Compared with the one-bit set-
ting, it can be noted that the two additional symbols are
used to encode the hatched area D0(E′0) .D1(E1), such that
(D0(E′0),D1(E1)) is still separable, where the operator “ .”
is as defined in Definition 3. Similarly, Fig. 2b illustrates the
geometric characterization when two nodes NX and NY have
one-trit and one-bit communication budgets, respectively, with
ϕ3,2 ↔ used as the decoder.

The above geometric interpretations also suggest a recursive
property of the separability under threshold decoders. For
example, in Fig. 2b, (D0(E0),D1(E1)) is separable under
ϕ3,2, if and only if D0(E0) and D1(E1) X

.D0(E0) (shown
in hatched) are separable under ϕ2,2, where “X

.” is as defined
in (12). Such recursive properties can be further generalized
as the following proposition, of which a proof is provided in
Appendix F.

Proposition 1: Suppose A0,A1 ⊂ P?, and φ is a reducible
decoder. For each i ∈ {0, 1}, if ω(i)

X (φ) exists, then (A0,A1) is
separable under φ if and only if (A0

X

.Aı̄,A1
X

.Aı̄) is separable
under ω(i)

X (φ). Similarly, if ω(i)
Y (φ) exists, then (A0,A1) is

separable under φ if and only if (A0
Y

.Aı̄,A1
Y

.Aı̄) is separable
under ω(i)

Y (φ), where “X

.” and “Y

.” are as defined in (12) and
(13), respectively.

With Proposition 1, the error exponent region under thresh-
old decoders can be summarized as follows, of which a proof
is provided in Appendix G.

Theorem 3: Given MX ≥ MY ≥ 1, the error exponent
regions under MX ×MY threshold decoders are

E[ϕMX ,MY
] = {(E0, E1) : D0(E0) .MY

D1(E1) = ∅},
E[ϕ̄MX ,MY

] = {(E0, E1) : D1(E1) .MY
D0(E0) = ∅}

if MX = MY , and

E[ϕMX ,MY
] = E[ϕ̄MX ,MY

]

= {(E0, E1) : D0(E0) .MY

(
D1(E1) X

.D0(E0)
)

= ∅}

if MX > MY , where the operators “ .k” and “ X

. ” are as
defined in Definition 3.

From Fact 4 and Theorem 3, we can readily obtain an inner
bound of E(0MX

, 0MY
) as

E(0MX
, 0MY

) = E[FMX ,MY
]

⊃ (E[ϕMX ,MY
] ∪ E[ϕ̄MX ,MY

]) . (34)

This bound can be tight under certain circumstances, as we
will illustrate later.

In addition, the following result illustrates that, when the
communication constraint on one node is much stronger than
that on the other node, the performance of DHT is dominated
by this stronger constraint. A proof is provided in Appendix H.

Proposition 2: For given MY ≥ 1, MX > 2MY , and RX ∈
[0,∞), we have

E(RX , 0MY
) = E(0MX

, 0MY
) = E(02MY , 0MY

).

Therefore, without loss of generality we may assume that
MY ≤MX ≤ 2MY .

C. Construction of Sufficient Decoder Families

We then demonstrate a construction of sufficient decoder
families. As a first step, we partition the collection FMX ,MY

of MX ×MY decoders as

FMX ,MY
= ΩMX ,MY

∪ Ω̄MX ,MY
, (35)

where we have defined

ΩMX ,MY
, {φ ∈ FMX ,MY

: φ is completely reducible},
Ω̄MX ,MY

, FMX ,MY
\ ΩMX ,MY

. (36)

Then, we discuss the decoders in ΩMX ,MY
and Ω̄MX ,MY

separately.
For the decoders in ΩMX ,MY

, we have the following useful
characterization, a proof of which is provided in Appendix I.

Proposition 3: Let φ denote an MX ×MY decoder with
MX ,MY ≥ 2. Then, the following statements are equivalent:
S1) φ is completely reducible;
S2) each 2× 2 subdecoder of φ is reducible;
S3) there exists a monotonic decoder φ′ such that φ ' φ′.

As an immediate consequence of Proposition 3, note that
the threshold decoders are monotonic decoders, and thus are
completely reducible. Furthermore, we have the following con-
sequence of Proposition 3, which demonstrates the sufficiency
of threshold decoders.

Lemma 5: For given MX ≥MY ≥ 1, we have ΩMX ,MY
�

ΦMX ,MY
, where we have defined

ΦMX ,MY
, {ϕMX ,MY

, ϕ̄MX ,MY
}. (37)

A proof of Lemma 5 is provided in Appendix J, and makes
use of the following simple fact.

Fact 5: If φ ' φ′, then E[φ] = E[φ′]. If φ′ is a subdecoder
of φ, then {φ′} � {φ}.

Remark 4: If MX > MY , we have ϕMX ,MY
' ϕ̄MX ,MY

,
and it follows from Fact 5 that

ΦMX ,MY
= {ϕMX ,MY

, ϕ̄MX ,MY
} � {ϕMX ,MY

}.

Therefore, the statement of Lemma 5 can be further refined
to ΩMX ,MY

� {ϕMX ,MY
} for the case MX > MY .

Moreover, we have the following characterization for de-
coders in Ω̄MX ,MY

, a proof of which is provided in Ap-
pendix K.

Proposition 4: For each decoder φ that is not completely
reducible, there exists a unique irreducible decoder φ′ that
can be reduced from φ.

Specifically, for each φ that is not completely reducible, we
refer to the φ′ given by Proposition 4 as the reduced form of
φ, denoted by ω∗(φ). Then, we can further partition Ω̄MX ,MY

as

Ω̄MX ,MY
= Ω̄

(0)
MX ,MY

∪ Ω̄
(1)
MX ,MY

, (38)

where

Ω̄
(0)
MX ,MY

, {φ ∈ Ω̄MX ,MY
: ω∗(φ) is indecomposable},

Ω̄
(1)
MX ,MY

, {φ ∈ Ω̄MX ,MY
: ω∗(φ) is decomposable}. (39)



In addition, we have the following lemma, a proof of which
is provided in Appendix L.

Lemma 6: Given MX ≥ MY ≥ 1, we have Ω̄
(1)
MX ,MY

�
(ΩMX ,MY

∪ Ω̄
(0)
MX ,MY

), where Ω̄(1) is as defined in (37), and
where Ω and Ω̄(0) are as defined in (39).

By applying Lemma 5 and Lemma 6, the following theorem
provides a construction of sufficient decoder families.

Theorem 4: Given MX ≥ MY ≥ 1, the decoder family
ΦMX ,MY

∪ Ω̄
(0)
MX ,MY

is sufficient for FMX ,MY
, where Φ and

Ω̄(0) are as defined in (37) and (39), respectively.
Proof: From (35) and (38), we have

FMX ,MY
= ΩMX ,MY

∪ Ω̄
(0)
MX ,MY

∪ Ω̄
(1)
MX ,MY

(40)

� ΩMX ,MY
∪ Ω̄

(0)
MX ,MY

(41)

� ΦMX ,MY
∪ Ω̄

(0)
MX ,MY

(42)

where to obtain (41) we have used Lemma 5 and Fact 2, and
where to obtain (42) we have used Lemma 6.

D. Error Exponent Regions

We then provide several conditions where the inner bound
(34) is tight, i.e., the threshold decoders ΦMX ,MY

are sufficient
for FMX ,MY

. To this end, we first introduce the following
lemma, a proof of which is provided in Appendix M.

Lemma 7: Given MX ≥ MY ≥ 1 with (MX − 2)(MY −
2) < 2, we have

E(0MX
, 0MY

) = E[ϕMX ,MY
] ∪ E[ϕ̄MX ,MY

]. (43)

From Lemma 7, it suffices to consider threshold decoders
for the one-bit compression settings with MX ≥ MY = 2
and two-sided one-trit compression (MX = MY = 3). As a
straightforward corollary, we first revisit the two-sided one-bit
compression setting, i.e., MX = MY = 2, with the following
characterization of corresponding exponent region E(02, 02).

Corollary 1 ([3, Theorem 5], [4, Theorem 5.6]): With one-
bit compression for both nodes, we have

E(02, 02) = E[ϕ2,2] ∪ E[ϕ̄2,2],

where E[ϕ2,2] and E[ϕ̄2,2] are as given by Theorem 3, and can
be represented as

E[ϕ2,2] = {(E0, E1) : D0(E0) ∩B1(E1) = ∅},
E[ϕ̄2,2] = {(E0, E1) : B0(E0) ∩D1(E1) = ∅},

where for i ∈ {0, 1} and t ≥ 0, we have defined

Bi(t) , {(QX , QY ) : D(QX‖P (i)
X ) < t,D(QY ‖P (i)

Y ) < t}.

Remark 5: It has been shown in [3] that the same result can
be established when we relax the strict positive assumption
(21) to D(P

(0)
XY ‖P

(1)
XY ) <∞.

Similarly, the error exponent region with two-sided one-trit
compression is as follows.

Corollary 2: The exponent region of MX = MY = 3 is

E(03, 03) = E[ϕ3,3] ∪ E[ϕ̄3,3],

where E[ϕ3,3] and E[ϕ̄3,3] are as given by Theorem 3.
In addition, by combining Proposition 2 and Lemma 7, we

can establish the error exponent region for one-sided one-bit
compression.

Corollary 3: For all M ≥ 3 and R ∈ [0,∞), we have

E(R, 02) = E(0M , 02) = E(03, 02) = E[ϕ3,2].

Remark 6: It is worth noting that in general we have
E(02, 02) ( E(03, 02) = E(R, 02). Therefore, when one
distributed node can only transmit one bit, to obtain the
optimal performance, the other node is required to transmit
at least a one-trit message. This situation differs from the one
appeared in investigating the optimal type-II error exponent E1

with type-I error π0 constrained by a constant (cf. [2, Corollary
7]), where it requires only a one-bit message sent from the
other node to obtain the optimal performance.

Finally, when the observations at both nodes are condition-
ally independent given H = 0 or H = 1, the inner bound (34)
is tight for all MX ≥MY ≥ 1, illustrated as follows. A proof
is provide in Appendix N.

Theorem 5: Suppose P (i)
XY = P

(i)
X P

(i)
Y for some i ∈ {0, 1},

then we have

E(0MX
, 0MY

) = E[ϕMX ,MY
] ∪ E[ϕ̄MX ,MY

],

for all MX ≥ MY ≥ 1, where E[ϕMX ,MY
] and E[ϕ̄MX ,MY

]
are as given by Theorem 3.

APPENDIX A
PROOF OF FACT 1

Given α ∈ (0, 1) and i ∈ {0, 1}, for all (QX , QY ) and
(RX , RY ) ∈ P?, we have

D∗i (αQX + (1− α)RX , αQY + (1− α)QY )

≤ D(αQ̃XY + (1− α)R̃XY ‖P (i)
XY )

≤ αD(Q̃XY ‖P (i)
XY ) + (1− α)D(R̃XY ‖P (i)

XY )

= αD∗i (QX , QY ) + (1− α)D∗i (RX , RY ),

where we have chosen Q̃XY and R̃XY such that

[Q̃XY ]X = QX , [Q̃XY ]Y = QY , (44)

[R̃XY ]X = RX , [R̃XY ]Y = RY , (45)

and

D(Q̃XY ‖P (i)
XY ) = D∗i (QX , QY ),

D(R̃XY ‖P (i)
XY ) = D∗i (RX , RY ).

APPENDIX B
PROOF OF FACT 3

To begin, for each given marginal type pair (QX , QY ) ∈
P̂X
n × P̂Y

n, let us define

R , {QXY ∈ PX×Y : [QXY ]X = QX , [QXY ]Y = QY }
R̂n , {QXY ∈ P̂X×Y

n : [QXY ]X = QX , [QXY ]Y = QY }.



and

Q̃
(i)
XY , arg min

QXY ∈R
D(QXY ‖P (i)

XY ), for i ∈ {0, 1}.

Then, under the hypothesis H = i ∈ {0, 1}, the probabil-
ity of observing a sequence (Xn, Y n) with marginal types
(QX , QY ) can be represented as

P
{
Xn ∈ TnQX , Y

n ∈ TnQY

∣∣H = i
}

=
∑

QXY ∈R̂n

P
{

(Xn, Y n) ∈ TnQXY

∣∣H = i
}

≤
∑

QXY ∈R̂n

exp(−nD(QXY ‖P (i)
XY )) (46)

≤
∣∣∣R̂n∣∣∣ · exp(−nD∗i (QX , QY )) (47)

≤
∣∣∣P̂X×Y
n

∣∣∣ · exp(−nD∗i (QX , QY ))

≤ (n+ 1)|X||Y| exp(−nD∗i (QX , QY )) (48)
= exp(−n(D∗i (QX , QY )− εn)), (49)

where (46) follows from (19), where (47) follows from the
definition of D∗i [cf. (9)], where (48) follows from (18), and
where we have defined

εn ,
|X||Y| log(n+ 1)

n
= o(1). (50)

In addition, for each i ∈ {0, 1}, since R̂n is dense in R, there
exists Q̂(n)

XY ∈ R̂n satisfying

dmax(Q̂
(n)
XY , Q̃

(i)
XY ) = o(1),

and it follows from the uniform continuity of KL divergence
that

|D(Q̂
(n)
XY ‖P

(i)
XY )−D∗i (QX , QY )|

= |D(Q̂
(n)
XY ‖P

(i)
XY )−D(Q̃

(i)
XY ‖P

(i)
XY )| < νn (51)

for some νn = o(1).
Therefore, we obtain

P
{
Xn ∈ TnQX , Y

n ∈ TnQY

∣∣H = i
}

=
∑

QXY ∈R̂n

P
{

(Xn, Y n) ∈ TnQXY

∣∣H = i
}

≥ P
{

(Xn, Y n) ∈ Tn
Q̂

(n)
XY

∣∣∣H = i
}

≥ (n+ 1)−|X||Y| · exp(−nD(Q̂
(n)
XY ‖P

(i)
XY )) (52)

≥ (n+ 1)−|X||Y| · exp(−n(D∗i (QX , QY ) + νn)) (53)
= exp(−n(D∗i (QX , QY ) + νn + εn), (54)

where to obtain (52) we have again used (19), to obtain (53)
we have used (51), and where εn is as defined in (50).

Finally, (22) is obtained via combining (49) and (54).

APPENDIX C
PROOF OF LEMMA 4

For a given pair of marginal distributions (QX , QY ) ∈ P̂X
n×

P̂Y
n, we first define

SX , {xn ∈ Xn : fn(xn) = θX(QX)},
SY , {yn ∈ Yn : gn(yn) = θY (QY )}

and SXY , SX × SY , where for given fn and gn, we have
defined θX : PX → M

(n)
X and θY : PY → M

(n)
Y such that for

all PX ∈ PX and PY ∈ PY,

θX(PX) , arg max
mX∈M(n)

X

P
{
fn(Xn) = mX

∣∣Xn ∼ P⊗nX
}
, (55)

θY (PY ) , arg max
mY ∈M(n)

Y

P
{
gn(Y n) = mY

∣∣Y n ∼ P⊗nY }
. (56)

By symmetry, it suffices to establish (23) for i = 0. To
this end, let (Xn, Y n) be i.i.d. generated from P

(0)
XY , and

we define QXY ∈ PX×Y such that it satisfies [QXY ]X =

QX , [QXY ]Y = QY and D∗0(QX , QY ) = D(QXY ‖P (0)
XY ).

Then, we can equivalently express (23) as

P {(Xn, Y n) ∈ SXY }
≥ exp(−n · (D(QXY ‖P (0)

XY ) + εn)) (57)

with εn = o(1).
We then illustrate that (57) holds, if there exists a sequence

of positive integers {ln}n≥1 with ln = o(n), such that for n
sufficiently large, we have

max
Q̃XY ∈Qn

γn(Q̃XY ) ≥ 1

2
, (58)

where for each n ≥ 1 and Q̃XY ∈ P̂X×Y
n , we have defined

γn(Q̃XY ) ,

∣∣∣Tn
Q̃XY

∩Nln
H (SXY )

∣∣∣∣∣∣Tn
Q̃XY

∣∣∣ (59)

with Nd
H(·) denoting the Hamming d-neighborhood (cf. Defi-

nition 2), ηn , n−
1
3 , and

Qn ,
{
Q̃XY ∈ P̂X×Y

n : dmax(Q̃XY , QXY ) ≤ ηn
}
. (60)

To see this, first note that from Lemma 2, we have

P {(Xn, Y n) ∈ SXY }

≥ P
{

(Xn, Y n) ∈ Nln
H (SXY )

}
· exp(−nε′n) (61)

for some ε′n = o(1).
Moreover, from (58), for sufficiently large n, there exists

Q′XY ∈ Qn, such that γn(Q′XY ) ≥ 1
2 . As a result, we have

P
{

(Xn, Y n) ∈ Nln
H (SXY )

}
≥ P

{
(Xn, Y n) ∈ TnQ′

XY
∩Nln

H (SXY )
}

= P
{

(Xn, Y n) ∈ TnQ′
XY

}
· γn(Q′XY )

≥ 1

2
· P
{

(Xn, Y n) ∈ TnQ′
XY

}
(62)



where the equality follows from the fact that different se-
quences within a type class are equiprobable.

In addition, it follows from the definition of Qn [cf. (60)]
that dmax(Q′XY , QXY ) ≤ ηn. Hence, from the uniform
continuity of KL divergence, there exists ε′′n = o(1) such that∣∣∣D(Q′XY ‖P

(0)
XY )−D(QXY ‖P (0)

XY )
∣∣∣ < ε′′n.

This implies that

P
{

(Xn, Y n) ∈ TQ′
XY

}
≥ (n+ 1)−|X||Y| exp(−nD(Q′XY ‖P

(0)
XY ))

≥ (n+ 1)−|X||Y| exp(−nε′′n) · exp(−nD(QXY ‖P (0)
XY )),

(63)

where the first inequality follows from the lower bound in (19)
for probability of a type class, see, e.g., [17, Theorem 11.1.4]
or [13, Lemma 2.6].

Then, it can then be verified from (61), (62) and (63) that
(57) holds with

εn = ε′n + ε′′n +
1

n
log 2 +

|X||Y|
n

log(n+ 1) = o(1).

Hence, it remains to establish (58). To this end, we turn
to consider probabilities under the measure QXY , and let
(X̃n, Ỹ n) be i.i.d. generated from QXY . Then, it follows from
Lemma 1 that

P
{

(X̃n, Ỹ n) ∈ TnQXY ;ηn

}
≥ 1− |X||Y|

4nη2
n

= 1− |X||Y|
4n

1
3

.

(64)

Moreover, from (55) we have

P
{
X̃n ∈ SX

}
= P

{
fn(X̃n) = θX(QX)

}
≥ 1

‖fn‖
= exp

(
−n · log ‖fn‖

n

)
, (65)

and, similarly, from (56) we have

P
{
Ỹ n ∈ SY

}
≥ exp

(
−n · log ‖gn‖

n

)
. (66)

Then, since fn and gn are with zero-rates, both 1
n log ‖fn‖

and 1
n log ‖gn‖ vanish as n tends to infinity. Therefore, it

follows from Lemma 3 that there exist dn = o(n) and
νn = o(1), such that

P
{
X̃n ∈ Ndn

H (SX)
}
≥ 1− νn, (67)

P
{
Ỹ n ∈ Ndn

H (SY )
}
≥ 1− νn, (68)

where Nd
H(·) denotes the d-Hamming neighborhood, as de-

fined in Definition 2.

Let ln , 2dn = o(n), and it follows from the fact
Ndn

H (SX)×Ndn
H (SY ) ⊂ N2dn

H (SX × SY ) = Nln
H (SXY ) that

P
{

(X̃n, Ỹ n) ∈ Nln
H (SXY )

}
≥ P

{
(X̃n, Ỹ n) ∈ Ndn

H (SX)×Ndn
H (SY )

}
≥ P

{
X̃n ∈ Ndn

H (SX)
}

+ P
{
Ỹ n ∈ Ndn

H (SY )
}
− 1

≥ 1− 2νn

= 1− o(1), (69)

where the second inequality follows from the elementary fact
that, for two events E1 and E2,

P {E1 ∩ E2} = P {E1}+ P {E2} − P {E1 ∪ E2}
≥ P {E1}+ P {E2} − 1. (70)

As a result, for sufficiently large n, we can obtain

P
{

(X̃n, Ỹ n) ∈ TnQXY ;ηn ∩Nln
H (SXY )

}
≥ P

{
(X̃n, Ỹ n) ∈ TnQXY ;ηn

}
+ P

{
(X̃n, Ỹ n) ∈ Nln

H (SXY )
}
− 1

≥ 1

2
. (71)

Therefore, with Qn as defined in (60), we obtain

max
Q̃XY ∈Qn

γn(Q̃XY )

≥
∑

Q̃XY ∈Qn

γn(Q̃XY ) · P
{
P̂X̃nỸ n = Q̃XY

}
=

∑
Q̃XY ∈Qn

γn(Q̃XY ) · P
{

(X̃n, Ỹ n) ∈ Tn
Q̃XY

}
=

∑
Q̃XY ∈Qn

P
{

(X̃n, Ỹ n) ∈ Tn
Q̃XY

∩Nln
H (SXY )

}
= P

{
(X̃n, Ỹ n) ∈ TnQXY ;ηn ∩Nln

H (SXY )
}

≥ 1

2
, (72)

where to obtain the second equality we have used the fact that

γn(Q̃XY ) = P
{

(X̃n, Ỹ n) ∈ Nln
H (SXY )

∣∣∣(X̃n, Ỹ n) ∈ Tn
Q̃XY

}
,

and where the last equality follows from that

TnQXY ;ηn =
⋃

Q̃XY ∈Qn

Tn
Q̃XY

.
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It suffices to prove the first equality, since the second
equality follows immediately from the definitions of E[·] and
sufficient decoder families.



To this end, suppose (E0, E1) ∈ E(0MX
, 0MY

), then for
each ε > 0, there exists a sequence of coding scheme
{Cn}n≥1, such that [cf. (4)]

− lim
n→∞

1

n
log πi(Cn) = Ei − ε, i = 0, 1, (73)

where each coding scheme Cn is equipped with some decoder
in FMX ,MY

.
Note that since the set FMX ,MY

is finite, there exists a de-
coder φ ∈ FMX ,MY

and an infinite subsequence {mk}k≥1 of
positive integers, such that for each k ≥ 1, the corresponding
coding scheme Cmk is equipped with φ.

Moreover, we define a new sequence of coding scheme
C′n , Cmk̂ where k̂ = k̂(n) , max{k : mk ≤ n}. It can
be verified that

− lim
n→∞

1

n
log πi(C

′
n) = − lim

k→∞

1

n
log πi(Cnk)

= Ei − ε, for i = 0, 1, (74)

which implies that (E0, E1) ∈ E[φ].
Therefore, we obtain

E(0MX
, 0MY

) ⊂
⋃

φ∈FMX,MY

E[φ] = E[FMX ,MY
]. (75)

In addition, note that for each decoder φ ∈ FMX ,MY
,

we have E[φ] ⊂ E(0MX
, 0MY

), which implies the reverse
inclusion

E[FMX ,MY
] ⊂ E(0MX

, 0MY
). (76)

From (75) and (76), we obtain E(0MX
, 0MY

) = E[FMX ,MY
]

as desired.

APPENDIX E
PROOF OF THEOREM E

We first demonstrate that (E0, E1) ∈ E[φ] if
(D0(E0),D1(E1)) is separable under φ. To this end,
we consider the error exponents associated with the
coding schemes {Cn}n≥1 with Cn , (fn, gn, φ), where
fn(xn) , θX(P̂xn), gn(yn) , θY (P̂yn), and θX and θY are
the corresponding functions as defined in Definition 9 to
separate (D0(E0),D1(E1)).

To begin, first note that from Fact 3, there exists some εn =
o(1), such that for each i ∈ {0, 1}, we have

P
{
Xn ∈ TnQX , Y

n ∈ TnQY |H = i
}

≤ exp(−n(D∗i (QX , QY )− εn)). (77)

In addition, for each i = 0, 1 and n ≥ 1, let us define

Γni , {(QX , QY ) ∈ P̂X
n × P̂Y

n : φ(θX(QX), θY (QY )) 6= i},

and it can be verified from Definition 9 that

D∗i (QX , QY ) ≥ Ei for all (QX , QY ) ∈ Γni . (78)

Therefore, the type-I error π0 and type-II error π1 can be
represented as

πi(Cn) = P
{
φ(θX(P̂Xn), θY (P̂Y n)) 6= i

∣∣∣H = i
}

=
∑

(QX ,QY )∈Γni

P
{
Xn ∈ TnQX , Y

n ∈ TnQY

∣∣H = i
}

≤
∑

(QX ,QY )∈Γni

exp(−n · (D∗i (QX , QY )− εn)) (79)

≤
∑

(QX ,QY )∈Γni

exp(−n(Ei − εn)) (80)

≤ |Γni | · exp(−n(Ei − εn)) (81)

≤ (n+ 1)|X|+|Y| exp(−n(Ei − εn)). (82)
≤ exp(−n(Ei − ε′n)), (83)

where (79) follows from (77), (80) follows from (78), (83)
follows from (29), and where ε′n is as defined in (30).

Note that since ε′n = o(1), we obtain (E0, E1) ∈ E[φ].
In addition, we illustrate that for each (E0, E1) ∈ E[φ],

(D0(E0),D1(E1)) is separable under φ. To this end, first
note that from Theorem 1, it suffices to consider coding
schemes C̃n = (f̃n, g̃n, φ) with type-based encoders f̃n : xn 7→
θ̂

(n)
X (P̂xn) and g̃n : yn 7→ θ̂

(n)
Y (P̂yn), where θ̂

(n)
X : P̂X

n →
dMXc and θ̂(n)

Y : P̂Y
n → dMY c are the encoders for marginal

types.
Then, it can be verified that for n sufficiently large, the θ̂(n)

X

and θ̂(n)
Y satisfy that, for both i = 0, 1, and each (QX , QY ) ∈

Di(Ei) ∩ (P̂X
n × P̂Y

n),

φ(θ̂
(n)
X (QX), θ̂

(n)
Y (QY )) = i. (84)

By symmetry, it suffices to establish (84) for the case i =
0, which can be shown by contraction. Indeed, suppose that
there exists some (QX , QY ) ∈ D0(E0)∩ (P̂X

n × P̂Y
n) such that

φ(θ̂
(n)
X (QX), θ̂

(n)
Y (QY )) = 1, then from Fact 3, there exists

some νn = o(1), such that the type-I error π0(C̃n) satisfies

π0(C̃n) ≥ P
{
Xn ∈ TnQX , Y

n ∈ TnQY |H = 0
}

≥ exp(−n(D∗0(QX , QY ) + νn))

Therefore, the type-I error exponent is at most D∗0(QX , QY ),
which is strictly less than E0, since (QX , QY ) ∈ D(E0). This
contradicts the assumption (E0, E1) ∈ E[φ].

Furthermore, let us define functions θ̃(n)
X : PX → dMXc and

θ̃
(n)
Y : P̂Y

n → dMY c such that

θ̃
(n)
X (QX) , θ̂

(n)
X (Q̂

(n)
X ) and θ̃

(n)
Y (QY ) , θ̂

(n)
X (Q̂

(n)
Y )

for all QX ∈ PX and QY ∈ PY, where

Q̂
(n)
X , arg min

Q′
X∈P̂X

n

dmax(Q′X , QX),

Q̂
(n)
Y , arg min

Q′
Y ∈P̂Y

n

dmax(Q′Y , QY ). (85)

Note that for each (QX , QY ) ∈ D0(E0), we have

D∗0(QX , QY ) < E0.



Note that from (85), we have

dmax(Q̂
(n)
X , QX) ≤ 1

n
and dmax(Q̂

(n)
Y , QY ) ≤ 1

n
,

and it follows from the uniform continuity of D∗0 that,

D∗0(Q̂
(n)
X , Q̂

(n)
Y ) < E0

for n sufficiently large.
This implies that (Q̂

(n)
X , Q̂

(n)
X ) ∈ D0(E0) ∩ (P̂X

n × P̂Y
n).

Hence, from (84) we obtain

φ(θ̃
(n)
X (QX), θ̃

(n)
Y (QY )) = 0. (86)

Similarly, we have

φ(θ̃
(n)
X (QX), θ̃

(n)
Y (QY )) = 1 (87)

for each (QX , QY ) ∈ D1(E1). From (86) and (87), D0(E0)
and D1(E1) is separable under φ, which completes the proof.

APPENDIX F
PROOF OF PROPOSITION 1

It suffices to consider the first statement for i = 0, and other
cases can be similarly established. To this end, let A ↔ φ

and φ′ , ω
(0)
X (φ) ↔ A

(0)
X denote the associated decision

matrix of φ and the reduced decoder, as defined in Definition 6,
respectively. We also define

A′0 , A0
X

.A1, and A′1 , A1
X

.A1 = A1. (88)

Without loss of generality, suppose the 0-dominated columns
of A are its last d columns, i.e., we have

φ(mX ,mY ) = 0, (89)

for each mX = MX − d, . . . ,MX − 1 and mY ∈ dMY c.
Moreover, it can be verified that φ′ is the restriction of φ

to dMX − dc × dMY c, and we have

φ′(mX ,mY ) = φ(mX ,mY ) (90)

for each (mX ,mY ) ∈ dMX − dc × dMY c.
To prove the “only if” part of the claim, suppose (A0,A1)

is separable under φ. Then, from Definition 9, there exist
mappings θX : PX → dMXc and θY : PY → dMY c, such
that for both i ∈ {0, 1}, we have

φ(θX(QX), θY (QY )) = i, for all (QX , QY ) ∈ Ai. (91)

For each QX ∈ ΠX(A1), it can be verified that θX(QX) ∈
dMX−dc. Otherwise, there exists Q′Y ∈ PY with (QX , Q

′
Y ) ∈

A1, and it follows from (89) that φ(θX(QX), θY (Q′Y )) = 0,
which contradicts the claim (91).

Then, we define θ′ : PX → dMX − dc such that

θ′(QX) =

{
θ′(QX) if QX ∈ ΠX(A1),

0 otherwise,
(92)

and it follows from (90) that, for each QX ∈ ΠX(A1) and
QY ∈ PY, we have

φ(θX(QX), θY (QY )) ≡ φ′(θ′X(QX), θY (QY )).

Moreover, from (91) we have, for both i ∈ {0, 1},

φ′(θ′X(QX), θY (QY )) = i, for all (QX , QY ) ∈ A′i, (93)

which implies that (A′0,A
′
1) is separable under φ′.

For the “if” part of the claim, suppose (A′0,A
′
1) is separable

under φ′, then there exist functions θ̂X : PX → dMX−dc and
θ̂Y : PY → dMX − dc, such that for both i ∈ {0, 1}, we have

φ′(θ̂X(QX), θ̂Y (QY )) = i, for all (QX , QY ) ∈ A′i. (94)

Then, let us define θ̂′ : PX → dMXc such that

θ̂′(QX) =

{
θ̂(QX) if QX ∈ ΠX(A1),

MX − d otherwise.
(95)

From (89), for both i ∈ {0, 1}, we have

φ(θ̂′X(QX), θ̂Y (QY )) = i, for all (QX , QY ) ∈ Ai, (96)

which implies that (A0,A1) is separable under φ.

APPENDIX G
PROOF OF THEOREM 3

We first introduce several useful facts on the separability,
which can be readily verified from Definition 9.

Fact 6: Given A,A′ ⊂ P? and decoders φ ' φ′, (A,A′) is
separable under φ if and only if it is separable under φ′.

Fact 7: Given A,A′ ⊂ P?, (A,A′) is separable under ϕ1,1

if and only if A′ = ∅.
Fact 8: For any given A,A′ ⊂ P? and φ ∈ F, (A,A′) is

separable under φ if and only if (A′,A) is separable under its
complement φ̄.

The following corollary of Proposition 1 would also be
useful.

Corollary 4: Suppose A and A′ are two disjoint subsets of
P?. Given M ≥ 2, the following statements are equivalent:
S1) (A,A′) is separable under ϕM,M ;
S2) (A′,A .A′) is separable under ϕM−1,M−1;
S3) A .M A′ = ∅.

In addition, for given MX > MY ≥ 1, (A,A′) is separable
under ϕMX ,MY

if and only if (A,A′ X.A) is separable under
ϕMY ,MY

.
Proof of Corollary 4: First, note that

ϕ̄M−1,M−1 = ω
(0)
Y

(
ω

(0)
X (ϕM,M )

)
.

Therefore, from Proposition 1, we have

S1 (A,A′) is separable under ϕM,M

⇐⇒ (A X

.A
′,A′) is separable under ω(0)

X (ϕM,M )

⇐⇒ ((A X

.A
′) Y

.A
′,A′) is separable under ϕ̄M−1,M−1

⇐⇒ (A .A′,A′) is separable under ϕ̄M−1,M−1

⇐⇒ S2 (A′,A .A′) is separable under ϕM−1,M−1,

where the third “⇐⇒” follows from (A X

.A′)
Y

.A′ = A .A′.
To obtain the last “⇐⇒”, we have used Fact 8.



Then, by repeatedly applying the equivalence “S1 ⇐⇒
S2” (M − 1) times, we know that statements S1 and S2 are
further equivalent to

(A .M−1 A
′,A .M A′) is separable under ϕ1,1

⇐⇒ S3 A .M A′ = ∅,

where we have used Fact 7.
Similarly, we can establish the second statement of the

claim, by noting that

ϕMY ,MY
= ω

(1)
X (ϕMX ,MY

), for all MX > MY ≥ 1.

Proceeding to the proof of Theorem 3, we first consider the
case MX = MY . From Theorem 2 we have

(E0, E1) ∈ E[ϕMY ,MY
]

⇐⇒ (D0(E0),D1(E1)) is separable under ϕMY ,MY

⇐⇒ D0(E0) .M D1(E1) = ∅,

where the last “⇐⇒ ” follows from Corollary 4. Then, it
follows from Fact 8 that

(E0, E1) ∈ E[ϕMY ,MY
] ⇐⇒ D1(E1) .M D0(E0) = ∅.

For the case MX > MY , it can be verified that

E[ϕMX ,MY
] = E[ϕMY +1,MY

]

= E[ϕ̄MY +1,MY
] = E[ϕ̄MX ,MY

],

where the second equality follows from Fact 6 and that
ϕMY +1,MY

' ϕ̄MY +1,MY
. To obtain the first equality, note

that the decision matrix associated with ϕMX ,MY
and that

associated with ϕMY ,MY
differ only in duplicated columns.

The last equality follows from symmetry considerations.
Then, from Theorem 2 and Corollary 4 we can obtain

(E0, E1) ∈ E[ϕMX ,MY
]

⇐⇒ (D0(E0),D1(E1)) is separable under ϕMX ,MY

⇐⇒ (D0(E0),D1(E1) X

.D0(E0))

is separable under ϕMY ,MY

⇐⇒ D0(E0) .MY
(D1(E1) X

.D0(E0)) = ∅,

which completes the proof.

APPENDIX H
PROOF OF PROPOSITION 2

First, we define Rmax , max{H(P
(0)
X ), H(P

(1)
X )} with

H(·) representing the entropy. Then, due to the inclusion chain

E(02MY , 0MY
) ⊂ E(0MX

, 0MY
)

⊂ E(RX , 0MY
) ⊂ E(Rmax, 0MY

), (97)

it suffices to demonstrate E(02MY , 0MY
) = E(Rmax, 0MY

).
Specifically, note that under the constraints (Rmax, 0MY

),
the decoder can obtain the full side information of the X
sequence. Then, for each n ≥ 1, the corresponding coding
scheme can be characterized as a encoder gn that encodes
Y n, and a central decoder φn : Xn × dMY c → {0, 1}. When

nodes NX and NY observe sequences Xn = xn and Y n = yn,
respectively, the decision at the center can be represented as
Ĥ = φn(xn, gn(yn)).

Then, we introduce a new encoder fn : Xn → d2MX c for
encoding Xn, such that

fn(xn) ,
∑

j∈dMY c

φn(xn, j) · 2j , for all xn ∈ Xn.

We also define decoder φ′ : d2MY c × dMY c → {0, 1} as

φ′(mX ,mY ) , bmY , (mX ,mY ) ∈ d2MY c × dMY c,

where for each j ∈ dMY c, bj ∈ {0, 1} denotes the (j + 1)-th
digit of the binary representation of mX , such that

mX = (bMY −1 · · · b1b0)2 ,
∑

j∈dMY c

bj · 2j .

It can be verified that for each xn ∈ Xn and yn ∈ Yn, the
decision Ĥ′ associated with the coding scheme (fn, gn, φ

′) is

Ĥ′ = φ′(fn(xn), gn(yn)) ≡ φn(xn, gn(yn)) = Ĥ.

Therefore, for each coding scheme under the rate constraints
(Rmax, 0MY

), there exists a coding scheme satisfying con-
straints (02MY , 0MY

) which obtains the same decision result.
Hence, we have E(Rmax, 0MY

) ⊂ E(02MY , 0MY
), and it

follows from (97) that E(02MY , 0MY
) = E(Rmax, 0MY

).

APPENDIX I
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We would show the equivalences by separately establishing
“S1 =⇒ S2”, “S2 =⇒ S3”, and “S3 =⇒ S1”.

First, for the claim “S1 =⇒ S2”, note that there are two
irreducible 2× 2 decoders, which we can denote by

φ0 ↔ A0 = and φ1 ↔ A1 = . (98)

We then prove the claim by contradiction. Specifically, we
assume that φ↔ A has a irreducible subdecoder φ0. Without
loss of generality, suppose A0 is the submatrix of A composed
of first two rows and first two columns of A. Then, it suffices
to show that φ is not completely reducible, which is trivially
true if φ is irreducible.

We now consider the case where φ is reducible. Then, there
exists an elementary reduction operator ω, such that ω(φ)
exists. Since the first two rows and first two columns of A
cannot be dominated, A0 is also a submatrix of A′ ↔ ω(φ),
and thus φ0 is also a subdecoder of ω(φ). As a consequence,
for all φ′ that can be reduced from φ, φ0 is a subdecoder of φ′,
which implies that φ is not completely reducible. Similarly, φ
is not completely reducible if φ1 is a subdecoder of φ.

Then, to prove “S2 =⇒ S3”, note that for each decoder φ,
we can construct its equivalent decoder φ′ ' φ such that the
functions σ(φ)

X (·) and σ(φ)
Y (·) are both non-decreasing, where

for each φ ∈ FMX ,MY
, we have defined

σ
(φ)
X (mX) ,

∑
mY ∈dMY c

φ(mX ,mY ), ∀mX ∈ dMXc, (99a)

σ
(φ)
Y (mY ) ,

∑
mX∈dMXc

φ(mX ,mY ), ∀mY ∈ dMY c. (99b)



We then establish that φ′ is monotonic if φ satisfies the
statement S2. To see this, first note that for all 0 ≤ mX <
m′X < MX , we have σX(mX) ≤ σX(m′X), which implies∑

mY ∈dMY c

[φ′(mX ,mY )− φ′(m′X ,mY )] ≤ 0. (100)

Now, suppose φ′(mX ,mY ) − φ′(m′X ,mY ) > 0 for some
mY ∈ dMY c. Since the summation (100) is non-negative,
there exists m′Y ∈ dMY c with φ′(mX ,m

′
Y )−φ′(m′X ,m′Y ) <

0. Therefore,

φ′(mX ,mY ) = 1, φ′(m′X ,mY ) = 0,

φ′(mX ,m
′
Y ) = 0, φ′(m′X ,m

′
Y ) = 1,

which implies that φ′ has an irreducible 2 × 2 subdecoder.
Thus, φ also has an irreducible 2 × 2 subdecoder, which
contradicts the statement S2.

As a consequence, we obtain

φ′(mX ,mY )− φ′(m′X ,mY ) ≤ 0

for all mY ∈ dMY c and 0 ≤ mX < m′X < MX , and,
similarly,

φ′(mX ,mY )− φ′(mX ,m
′
Y ) ≤ 0

for all mX ∈ dMXc and 0 ≤ mY < m′Y < MY . This
demonstrates the statement S3.

Finally, to establish “S3 =⇒ S1”, note that for equivalent
decoders φ ' φ′, φ is completely reducible if and only if
φ′ is completely reducible. Therefore, it suffices to show that
monotonic decoders are completely reducible. To this end, we
first show that the monotonic decoders are reducible. Indeed,
given a monotonic decoder φ ∈ FMX ,MY

, it can be verified
from the definition that
• if φ(MX − 1, 0) = 0, then φ(mX , 0) = 0 for all mX ∈
dMXc;

• if φ(MX − 1, 0) = 1, then φ(MX − 1,mY ) ≡ 1 for all
mY ∈ dMY c.

Therefore, φ is reducible.
Moreover, if φ is non-trivial, then there exists an elementary

reduction operator ω, such that ω(φ) exists. Then, it can be
verified that ω(φ) is also monotonic, and we can similarly
apply reduction operations on ω(φ) until obtaining trivial
decoders. This establishes the statement S1.

APPENDIX J
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First, for all given MX and MY , we define

Fm
MX ,MY

, {φ ∈ FMX ,MY
: φ is monotonic}. (101)

Then, from Fact 5 and the equivalence of statements S1 and
S3 in Proposition 3, we obtain

E[ΩMX ,MY
] = E[Fm

MX ,MY
]. (102)

Therefore, it suffices to establish {φ} � ΦMX ,MY
for each

φ ∈ Fm
MX ,MY

.

To this end, we first establish a useful expression of mono-
tonic decoders via using the functions σ(φ)

X (·) and σ
(φ)
Y (·) as

defined in (99). In particular, for each φ ∈ Fm
MX ,MY

, from
the definition of monotonicity we have, for all (mX ,mY ) ∈
dMXc × dMY c,

φ(mX ,mY ) = 1{mX+σ
(φ)
Y (mY )≥MX}

(103)

= 1{σ(φ)
X (mX)+mY ≥MY }

. (104)

If MX > MY , for each mX ∈ dMXc, we have σ(φ)
X (mX) ∈

dMXc. Then, it follows from (104) that, for all mY ∈ dMY c,

φ(mX ,mY ) = 1{σ(φ)
X (mX)+mY ≥MY }

= ϕMX ,MY
(σ

(φ)
X (mX),mY ), (105)

which implies that φ is a subdecoder of ϕMX ,MY
. Therefore,

from Fact 5 we obtain

{φ} � {ϕMX ,MY
} � ΦMX ,MY

. (106)

For the case MX = MY , let M , MX , then σ
(φ)
Y (·) is

a non-decreasing function on dMc. If σ(φ)
Y (·) is not strictly

increasing, then there exists m′Y ∈ dM − 1c, such that
σ

(φ)
Y (m′Y ) = σ

(φ)
Y (m′Y + 1), and from (103) we obtain

φ(mX ,m
′
Y ) = φ(mX ,m

′
Y + 1), for all mX ∈ dMc.

This implies that the m′Y -th and (m′Y + 1)-th rows of the
associated decision matrix A↔ φ are the same. Let A′ denote
the submatrix of A obtained by deleting its (m′Y + 1)-th row.
Then, it can be verified that, the decoder φ′ ↔ A′ is an M ×
(M − 1) monotonic decoder with E[φ] = E[φ′].

Therefore, we obtain

{φ} � Fm
M,M−1 � {ϕM,M−1} � {ϕM,M} � ΦM,M ,

where the second “�” follows from (106), and where the third
“�” follows from Fact 5 and that ϕM,M−1 is a subdecoder of
ϕM,M .

It remains to establish the claim for the case where MX =
MY = M and σ

(φ)
Y (·) is strictly increasing on dMc. To this

end, first note that if σ(φ)
Y (0) = 0, for each mX ∈ dMc we

have φ(mX , 0) = 0. Therefore, we have σ(φ)
X (mX) ∈ dMc,

and it follows from (105)–(106) that {φ} � Fm
M,M . Moreover,

if σ(φ)
Y (·) is strictly increasing and σ(φ)

Y (0) 6= 0, we have

σ
(φ)
Y (mY ) = mY + 1, for all mY ∈ dMc.

Hence, from (103) we have, for all (mX ,mY ) ∈ dMXc ×
dMY c,

φ(mX ,mY ) = 1{mX+mY ≥M−1}

= 1{(M−1−mX)+(M−1−mY )≤M−1}

= 1{(M−1−mX)+(M−1−mY )<M}

= ϕ̄M,M (M − 1−mX ,M − 1−mY ),

which implies that φ ' ϕ̄M,M . As a result, we obtain

{φ} � {ϕ̄M,M} � ΦM,M ,

which completes the proof.
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To begin, we consider a decoder φ that is not completely
reducible. If φ is irreducible, it suffices to let φ′ = φ.
Otherwise, since φ cannot be reduced to trivial decoders, each
decoder reduced from φ is either an irreducible decoder, or a
non-trivial reducible decoder. Therefore, we can apply a series
of elementary reduction operators on φ, until obtaining some
irreducible decoder.

It remains only to demonstrate the uniqueness of obtained
irreducible decoders. To see this, suppose both φ′′ and φ̃′′ are
the irreducible decoders obtained from the above procedures.

Note that since φ′′ is an irreducible subdecoder of φ, its
associated rows and columns in the decision matrix A ↔ φ
cannot be dominated during the above reduction procedures.
Therefore, it is also a subdecoder of all decoders reduced from
φ.

As a result, φ′′ is a subdecoder of φ̃′′, and, similarly, φ̃′′ is
a subdecoder of φ′′. Hence, we have φ′′ = φ̃′′, corresponding
to the unique decoder φ′ reduced from φ.

APPENDIX L
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Our proof makes use of the notion of open sets in P?,
together with discussions on the separability (cf. Definition 9)
under reducible and decomposable decoders.

As a first step, we define the open sets in P? as follows.
With slight abuse of notation, we use QXQY to represent
(QX , QY ) ∈ P?. Then, we introduce the metric d? on P?,
such that for all given QXQY , Q′XQ

′
Y ∈ P?,

d?(QXQY , Q
′
XQ
′
Y )

, max {dmax(QX , Q
′
X), dmax(QY , Q

′
Y )} .

Moreover, A ⊂ P? is open, if for each QXQY ∈ A, there
exists η > 0, such that for all Q′XQ

′
Y ∈ P? satisfying

d?(QXQY , Q
′
XQ
′
Y ) < η, we have Q′XQ

′
Y ∈ A.

Specifically, with assumption (21), the functions D∗0(·) and
D∗1(·) as defined in (9) are uniformly continuous, from which
we can obtain the following useful fact.

Fact 9: Suppose the assumption (21) holds. Then, for all
t ≥ 0 and i ∈ {0, 1}, Di(t) is open.

To better illustrate the separability under reducible decoders,
we introduce notations as follows.

For given A0,A1 ⊂ P? and a reduction operator ω, we
define the sets τi(A0,A1;ω) for i = 0, 1, such that for j ∈
{0, 1} and ̄ , 1− j,

τi(A0,A1;ω
(j)
X ) , Ai

X

.A̄, (107a)

τi(A0,A1;ω
(j)
Y ) , Ai

Y

.A̄, (107b)

and, for each composite reduction operator ω ◦ ω′,

τi(A0,A1;ω ◦ ω′) , τi(A
′
0,A

′
1;ω), (108)

where A′j , τj(A0,A1;ω′) for j ∈ {0, 1}.
Then, we have the following useful fact, which can be

verified by definition.

Fact 10: If A0,A1 ⊂ P? are open and convex, then for all
reduction operator ω and i ∈ {0, 1}, τi(A0,A1;ω) is open and
convex.

The following fact, as an immediate consequences of Propo-
sition 1, is also useful.

Fact 11: Suppose φ is a reducible decoder and can be
reduced to ψ , ω(φ) by some reduction operator ω. Then,
for all A0,A1 ⊂ P?, (A0,A1) is separable under φ if and
only if (τ0(A0,A1;ω), τ1(A0,A1;ω)) is separable under ψ.

In addition, our proof will make use of the following result.
Lemma 8: Suppose φ is a decomposable decoder with the

decomposition [cf. (14)]

φ = φ0 ⊕ φ1 ⊕ ı̄ (109)

for some i ∈ {0, 1}, where φ0 and φ1 satisfy (15). Suppose
A0 and A1 are open convex subsets of P?. If (A0,A1) is
separable under φ, then (A0,A1) is separable under φj for
some j ∈ {0, 1}.

Proof of Lemma 8: By symmetry, it suffices to consider
the case where (109) holds for i = 1, i.e.,

φ = φ0 ⊕ φ1. (110)

Since (A0,A1) is separable under φ, from Definition 9, there
exists θX : PX → dMXc and θY : PY → dMY c, such that, we
have

φ(θX(QX), θY (QY )) = 0, for all (QX , QY ) ∈ A0, (111)

and

φ(θX(QX), θY (QY )) = 1, for all (QX , QY ) ∈ A1. (112)

From (15) and (110), we have, for all (mX ,mY ) ∈ dMXc×
dMY c,

φ(mX ,mY ) = max{φ0(mX ,mY ), φ1(mX ,mY )}, (113)
φ0(mX ,mY ) · φ1(mX ,mY ) = 0. (114)

Therefore, we obtain, for each (QX , QY ) ∈ A0,

φ0(θX(QX), θY (QY )) = φ1(θX(QX), θY (QY )) = 0, (115)

and, for each (QX , QY ) ∈ A1,

φ0(θX(QX), θY (QY )) + φ1(θX(QX), θY (QY )) = 1.

Furthermore, we can demonstrate that, for either i = 0 or
i = 1,

φi(θX(QX), θY (QY )) ≡ 1, for all (QX , QY ) ∈ A1.
(116)

To see this, we define, for i ∈ {0, 1},

A
(i)
1 , {(QX , QY ) ∈ A1 :

φi(θX(QX), θY (QY )) = 1}, (117)

from which we obtain the partition A1 = A
(0)
1 ∪ A

(1)
1 with

A
(0)
1 ∩A

(1)
1 = ∅. Then, it suffices to show that A(i)

1 = ∅ for
i = 0 or i = 1, which we will establish by contradiction.



To begin, suppose we have (QX , QY ) ∈ A
(0)
1 and

(Q̃X , Q̃Y ) ∈ A
(1)
1 . Then, let us define sequences{

(Q
(n)
X , Q

(n)
Y )
}
n≥0

and
{

(Q̃
(n)
X , Q̃

(n)
Y )
}
n≥0

such that

(Q
(0)
X , Q

(0)
Y ) = (QX , QY ), (Q̃

(0)
X , Q̃

(0)
Y ) = (Q̃X , Q̃Y ).

Moreover, for each n ≥ 0, we define

(Q
(n+1)
X , Q

(n+1)
Y ) ,

{
(Q̂

(n)
X , Q̂

(n)
Y ) if (Q̂

(n)
X , Q̂

(n)
Y ) ∈ A

(0)
1 ,

(Q
(n)
X , Q

(n)
Y ) otherwise,

and

(Q̃
(n+1)
X , Q̃

(n+1)
Y ) ,

{
(Q̃

(n)
X , Q̃

(n)
Y ), if (Q̂

(n)
X , Q̂

(n)
Y ) ∈ A

(0)
1

(Q̂
(n)
X , Q̂

(n)
Y ), otherwise,

where we have defined

Q̂
(n)
X ,

1

2
(Q

(n)
X + Q̃

(n)
X ), Q̂

(n)
Y ,

1

2
(Q

(n)
Y + Q̃

(n)
Y ),

and we have (Q̂
(n)
X , Q̂

(n)
Y ) ∈ A1 due to the convexity of A1.

Then, for each n ≥ 0, it can be verified that

(Q
(n)
X , Q

(n)
Y ) ∈ A

(0)
1 , (Q̃

(n)
X , Q̃

(n)
Y ) ∈ A

(1)
1 , (118)

and

d?

(
Q

(n)
X Q

(n)
Y , Q̃

(n)
X Q̃

(n)
Y

)
=

1

2
· d?

(
Q

(n−1)
X Q

(n−1)
Y , Q̃

(n−1)
X Q̃

(n−1)
Y

)
=

1

2n
· d?

(
Q

(0)
X Q

(0)
Y , Q̃

(0)
X Q̃

(0)
Y

)
=

1

2n
· d?

(
QXQY , Q̃XQ̃Y

)
.

As a result, we obtain

d?
(
Q

(n)
X Q̃

(n)
Y , Q

(n)
X Q

(n)
Y

)
= dmax(Q̃

(n)
Y , Q

(n)
Y )

≤ d?
(
Q

(n)
X Q

(n)
Y , Q̃

(n)
X Q̃

(n)
Y

)
≤ 1

2n
· d?

(
QXQY , Q̃XQ̃Y

)
= o(1).

Since A1 is open, for sufficiently large n we have
Q

(n)
X Q̃

(n)
Y ∈ A1. Thus, it follows from (112) that

φ(θX(Q
(n)
X ), θY (Q̃

(n)
Y )) = 1. (119)

In addition, from (117) and (118), we have

θX(Q
(n)
X ) ∈ I

(1)
X (φ0) and θY (Q̃

(n)
Y ) ∈ I

(1)
Y (φ1), (120)

where I
(1)
X (·) and I

(1)
Y (·) are as defined in (16). This implies

that (cf. Definition 7)

φ(θX(Q
(n)
X ), θY (Q̃

(n)
Y )) = 0,

which contradicts (119).
Hence, we obtain (116) as desired. Finally, it follows from

(115) that (A0,A1) is separable under φj for some j ∈ {0, 1}.

Our proof of Lemma 6 proceeds as follows. First, we define
a mapping κ : F → N to indicate the reducibility of decoders.

Specifically, if φ is completely reducible, we let κ(φ) , 0;
otherwise, suppose ω∗(φ) ∈ FLX ,LY for some LX , LY ≥ 2,
then we define κ(φ) , min{LX , LY }, where ω∗(φ) denotes
the reduced form of φ as defined in Proposition 4.

If MY = 1, we have Ω̄
(1)
MX ,MY

⊂ Ω̄MX ,MY
= ∅, and

Lemma 6 is trivially true. Thus, it suffices to consider the case
MX ,MY ≥ 2. In particular, we will show that, for each φ ∈
Ω̄

(1)
MX ,MY

, if (E0, E1) ∈ E[φ], then there exists φ′ ∈ FMX ,MY
,

such that

(E0, E1) ∈ E[φ′] and κ(φ′) < κ(φ). (121)

It can be shown that Lemma 6 can be readily obtained from
(121). Indeed, note that from (121), for each φ ∈ Ω̄

(1)
MX ,MY

and (E0, E1) ∈ E[φ], we can obtain some φ′ satisfying (121).
Similarly, if φ′ ∈ Ω̄

(1)
MX ,MY

, we can again apply (121) to obtain
an MX×MY decoder φ′′ with κ(φ′′) < κ(φ′) and (E0, E1) ∈
E[φ′′]. Since κ(·) is non-negative, for each φ ∈ Ω̄

(1)
MX ,MY

and
error exponent pair (E0, E1) ∈ E[φ], we can repeatedly apply
these procedures to obtain

φ̃ ∈ FMX ,MY
\ Ω̄

(1)
MX ,MY

= ΩMX ,MY
∪ Ω̄

(0)
MX ,MY

,

such that (E0, E1) ∈ E[φ̃], which demonstrates Lemma 6.
It remains only to establish (121). To this end, suppose

we have a decoder φ ∈ Ω̄
(1)
MX ,MY

for some MX ,MY ≥ 2,
and an error exponent pair (E0, E1) ∈ E[φ]. Let ψ , ω∗(φ)
denote the reduced form of φ, as defined in Proposition 4.
Furthermore, suppose ψ can be reduced from φ by a reduction
operator ω, i.e., ψ = ω(φ). Suppose ψ ∈ FLX ,LY for some
LX ≤ MX and LY ≤ MY . Without loss of generality, we
assume that, for all (mX ,mY ) ∈ dLXc × dLY c,

ψ(mX ,mY ) = φ(mX ,mY ).

Then, for i ∈ {0, 1}, we define Ai , Di(Ei) and
A′i , τi(A0,A1;ω), with τi as defined in (107)–(108). Since
(E0, E1) ∈ E[φ], it follows from Theorem 2 that (A0,A1) is
separable under φ. From Fact 11, (A′0,A

′
1) is separable under

ψ.
Note that from Fact 1 and Fact 9, both A0 and A1 are convex

and open. Hence, it follows from Fact 10 that, A′0 and A′1 are
also convex and open. Then, from the definition of Ω̄

(1)
MX ,MY

[cf. (39)], ψ is decomposable and has the decomposition

ψ = ψ0 ⊕ ψ1 ⊕ ı̄ (122)

for some i ∈ {0, 1}, where ψ0, ψ1 ∈ FLX ,LY satisfy (15).
Hence, it follows from Lemma 8 that (A′0,A

′
1) is separable

under ψ0 or ψ1. Let us define φ0, φ1 ∈ FMX ,MY
such that,

for each j ∈ {0, 1},

φj(mX ,mY )

,

{
ψj(mX ,mY ) if (mX ,mY ) ∈ dLXc × dLY c,
φ(mX ,mY ) otherwise.

Then, it can be verified that (A0,A1) is separable under φ0 or
φ1, which implies that (E0, E1) ∈ E[φj ] for some j ∈ {0, 1}.



Finally, from the definition of κ(·), for both j ∈ {0, 1},

κ(φj) = κ(ψj) (123)

≤ min
{
|I(i)
X (ψj)|, |I(i)

Y (ψj)|
}

(124)
< min{LX , LY } (125)
= κ(ψ) = κ(φ), (126)

where I
(1)
X (·) and I

(1)
Y (·) are as defined in (16), and where to

obtain the inequalities (124) and (125), we have used (15).
Hence, we obtain (121) as desired.
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The following proposition is useful in our proof.
Proposition 5: If (MX − 2)(MY − 2) < 2, there exists

no MX × MY decoder that is both indecomposable and
irreducible.

Proof of Proposition 5: To begin, for each φ ∈ FMX ,MY
,

we define the bipartite graph Gφ = (U, V,Eφ) with the vertex
sets

U , {umX : mX ∈ dMXc}, V , {vmY : mY ∈ dMY c}

and the edge sets

Eφ , {(umX , vmY ) : φ(mX ,mY ) = 1},

where (umX , vmY ) represents the undirected edge connecting
umX and vmY . This establishes the one-to-one correspondence
between decoders and bipartite graphs, and it can be verified
that, the decision matrix A associated with φ corresponds to
the biadjacency matrix of Gφ.

We then illustrate that if φ is indecomposable and irre-
ducible, then both Gφ and Gφ̄ are connected. To this end,
first note that since φ is irreducible, there exists no isolated
vertex in Gφ.

Now, suppose Gφ is disconnected and can be divided
into bipartite graphs G(0) = (U0, V0, E

(0)) and G(1) =
(U1, V1, E

(1)), with non-empty vertex sets U0, U1, V0, V1 sat-
isfying

U = U0 ∪ U1, U0 ∩ U1 = ∅,
V = V0 ∪ V1, V0 ∩ V1 = ∅.

Let φ0 and φ1 be the decoders associated with G(0) and
G(1), respectively. Then, it can be verified that φ satisfies
(14) with i = 0, and thus is decomposable, which contradicts
our assumption. Therefore, Gφ is connected. Via a symmetry
argument, we can show that Gφ̄ is also connected.

Therefore, we obtain

|Eφ| ≥ |U |+ |V | − 1 (127a)
|Eφ̄| ≥ |U |+ |V | − 1, (127b)

where we have used the simple fact that each connected graph
with k vertices has at least k − 1 edges.

From (127), we obtain

MXMY = |Eφ|+ |Eφ̄|
≥ 2(|U |+ |V | − 1) = 2(MX +MY − 1),

which is equivalent to

(MX − 2)(MY − 2) ≥ 2. (128)

As a result, if (MX−2)(MY −2) < 2, no MX×MY decoder
is both indecomposable and irreducible.

Our proof of Lemma 7 proceeds as follows. First, for each
φ ∈ Ω̄

(0)
MX ,MY

, let ψ , ω∗(φ). Then, we have ψ ∈ FLX ,LY
for some LX ≤ MX , LY ≤ MY , and ψ is both irreducible
and indecomposable.

Note that if (MX − 2)(MY − 2) < 2, we have (LX −
2)(LY −2) < 2. Then, it follows from Proposition 5 that such
ψ does not exist. As a result, we have Ω̄

(0)
MX ,MY

= ∅.
Hence, from Theorem 4, ΦMX ,MY

is sufficient for
FMX ,MY

, and thus

E(0MX
, 0MY

) = E[FMX ,MY
] = E[ΦMX ,MY

]

= E[ϕMX ,MY
] ∪ E[ϕ̄MX ,MY

],

where the first equality follows from Fact 4.
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For given MX ,MY , note that if Ω̄MX ,MY
and ΩMX ,MY

as
defined in (36) satisfy

Ω̄MX ,MY
� ΩMX ,MY

, (129)

from Fact 2 we have

FMX ,MY
= Ω̄MX ,MY

∪ ΩMX ,MY
� ΩMX ,MY

,

and thus

E(0MX
, 0MY

) = E[FMX ,MY
] = E[ΩMX ,MY

] (130)
= E[ΦMX ,MY

], (131)

where the first equality follows from Fact 4, where the second
equality follows from (130) and Definition 8, and where the
last equality follows from Lemma 5.

Therefore, it suffices to establish (129). Note that if MY =
1, then Ω̄MX ,MY

= ∅, and (130) is trivially true. We then
establish (129) for MX ≥MY ≥ 2. To this end, we show that
for each φ ∈ Ω̄MX ,MY

, there exists φ′ ∈ ΩMX ,MY
, such that

E[φ] ⊂ E[φ′].
To begin, note that from statement S2 of Proposition 3, φ

has at least one irreducible 2×2 subdecoder [cf. (98)]. Without
loss of generality, we assume

φ(0, 0) = φ(1, 1) = 0,

φ(1, 0) = φ(1, 0) = 1.

By symmetry, it suffices to consider the case

P
(0)
XY = P

(0)
X P

(0)
Y . (132)

Let φ(0) , φ, and suppose fn : Xn → dMXc and gn : Yn →
dMY c are some given encoders. Then, we define φ(1) as

φ(1)(mX ,mY )

,

{
0 if (mX ,mY ) = (jX , ̄X),

φ(0)(mX ,mY ) otherwise,
(133)



where we have defined

jX , arg min
j∈{0,1}

P {fn(Xn) = j|H = 0} (134)

and ̄X , 1− jX .
For k = 0, 1, let C

(k)
n , (fn, gn, φ

(k)) denote the corre-
sponding coding schemes. Then, it can be verified that the
type-I and type-II errors for C(1)

n satisfy

π0(C(1)
n ) ≤ 2 · π0(C(0)

n ), (135a)

π1(C(1)
n ) ≤ π1(C(0)

n ). (135b)

To establish (135a), note that

π0(C(1)
n )− π0(C(0)

n )

= P {(fn(Xn), gn(Y n)) = (jX , ̄X)|H = 0} (136)
= P {fn(Xn) = jX |H = 0}P {gn(Y n) = ̄X |H = 0}

(137)
≤ P {fn(Xn) = ̄X |H = 0}P {gn(Y n) = ̄X |H = 0}

(138)
= P {(fn(Xn), gn(Y n)) = (̄X , ̄X)|H = 0} (139)

≤ π0(C(0)
n ), (140)

where (137) and (139) follow from (132), and where (138)
follows from (134).

Moreover, (141b) follows from the simple fact that, for all
(mX ,mY ) ∈ dMXc × dMY c,

φ(1)(mX ,mY ) = 1 implies φ(0)(mX ,mY ) = 1.

Furthermore, if φ(1) /∈ ΩMX ,MY
, we can define φ(2) similar

to (133). Similarly, for each k ≥ 0, we define φ(k+1) if φ(k) /∈
ΩMX ,MY

. Then, there exists k′ ≤ MXMY − 1, such that
φ(k′) ∈ ΩMX ,MY

.
To see this, it suffices to note that, for all k ≥ 0, we have

0 ≤ σXY (φ(k)) = σXY (φ(0))− k ≤MXMY − 1− k,

where we have defined, for each φ ∈ FMX ,MY
,

σXY (φ) ,
∑

mX∈dMXc

∑
mY ∈dMY c

φ(mX ,mY ).

In addition, similar to (133), for each k we have

π0(C(k)
n ) ≤ (k + 1) · π0(C(0)

n ), (141a)

π1(C(k)
n ) ≤ π1(C(0)

n ). (141b)

This implies that

π0(C(k′)
n ) ≤ (k′ + 1)π0(C(0)

n ) ≤MXMY · π0(C(0)
n ), (142a)

π1(C(k′)
n ) ≤ π1(C(0)

n ). (142b)

Let φ′ , φ(k′) ∈ ΩMX ,MY
. Then, since the encoders fn and

gn can be arbitrarily chosen, from (142) we obtain E[φ′] ⊂
E[φ], which completes the proof.
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