ON DISTRIBUTED HYPOTHESIS TESTING WITH CONSTANT COMMUNICATION BITS

Xiangxiang Xu April 15, 2022

Joint work with Shao-Lun Huang

Distributed Detection

- Distributed Detection
- Sensor Fusion

- Distributed Detection
- Sensor Fusion
- Federated Learning

· $H \in \{0, 1\}$: Binary Hypothesis

- · $H \in \{0, 1\}$: Binary Hypothesis
- $(X^n, Y^n) \stackrel{\text{i.i.d.}}{\sim} P_{XY}^{(H)}$: Observed Sequences

- · $H \in \{0, 1\}$: Binary Hypothesis
- $(X^n, Y^n) \stackrel{\text{i.i.d.}}{\sim} P_{XY}^{(H)}$: Observed Sequences
- $f_n(X^n), g_n(Y^n)$: Transmitted Messages

- · $H \in \{0, 1\}$: Binary Hypothesis
- $(X^n, Y^n) \stackrel{\text{i.i.d.}}{\sim} P_{XY}^{(H)}$: Observed Sequences
- $f_n(X^n), g_n(Y^n)$: Transmitted Messages
- $\hat{H} = dec(f_n(X^n), g_n(Y^n))$: Decision

$$H \xrightarrow{\qquad Y^n \qquad Node X \qquad f_n(X^n) \qquad Center \qquad \hat{H} \qquad H \xrightarrow{\qquad Y^n \qquad Node Y \qquad g_n(Y^n) \qquad Center \qquad \hat{H}$$

- · H \in {0,1}: Binary Hypothesis
- $(X^n, Y^n) \stackrel{\text{i.i.d.}}{\sim} P_{XY}^{(H)}$: Observed Sequences
- $f_n(X^n), g_n(Y^n)$: Transmitted Messages
- $\hat{H} = dec(f_n(X^n), g_n(Y^n))$: Decision

• f_n, g_n : Distributed Encoders

$$H \xrightarrow{\qquad Y^n \qquad Node X \qquad f_n(X^n) \qquad Center \qquad \hat{H} \qquad H \xrightarrow{\qquad Y^n \qquad Node Y \qquad g_n(Y^n) \qquad Center \qquad \hat{H}$$

- · H \in {0,1}: Binary Hypothesis
- $(X^n, Y^n) \stackrel{\text{i.i.d.}}{\sim} P_{XY}^{(H)}$: Observed Sequences
- $f_n(X^n), g_n(Y^n)$: Transmitted Messages
- $\hat{H} = dec(f_n(X^n), g_n(Y^n))$: Decision

- f_n, g_n : Distributed Encoders
- · dec(\cdot, \cdot): Central Decoder

Performance Metrics: Errors and Error Exponents

$$H \xrightarrow{\qquad \quad Y^n \qquad \text{Node } X} f_n(X^n) \xrightarrow{\qquad \quad Center \qquad } \hat{H}$$

Type-I Error
$$\pi_0 \triangleq \mathbb{P}\left\{ \hat{\mathsf{H}} \neq 0 \middle| \mathsf{H} = 0 \right\}$$

Type-II Error
$$\pi_1 \triangleq \mathbb{P}\left\{ \hat{\mathsf{H}} \neq 1 \middle| \mathsf{H} = 1 \right]$$

$$H \xrightarrow{\quad X^n \quad Node X \quad f_n(X^n)} (Center \rightarrow \hat{H})$$

Type-I Error
$$\pi_0 \triangleq \mathbb{P} \left\{ \hat{\mathsf{H}} \neq \mathsf{0} \middle| \mathsf{H} = \mathsf{0} \right\}$$

Error exponent E_0 : $\pi_0 \doteq \exp(-nE_0)$

Type-II Error

$$\pi_{1} \triangleq \mathbb{P}\left\{ \hat{\mathsf{H}} \neq 1 \middle| \mathsf{H} = 1 \right\}$$

Error exponent E_1 : $\pi_1 \doteq \exp(-nE_1)$

$$H \xrightarrow{\quad Y^n \quad Node \ X} f_n(X^n) \xrightarrow{\quad Center \quad \hat{H}} \hat{H}$$

$$\pi_{0} \triangleq \mathbb{P}\left\{ \hat{\mathsf{H}} \neq 0 \middle| \mathsf{H} = 0 \right\}$$

Error exponent E_0 : $\pi_0 \doteq \exp(-nE_0)$

Optimal E_1 under $\pi_0 < \epsilon$

Type-II Error

$$\pi_{1} riangleq \mathbb{P}\left\{ \hat{\mathsf{H}} \neq 1 \middle| \mathsf{H} = 1
ight\}$$

Error exponent E_1 : $\pi_1 \doteq \exp(-nE_1)$

$$H \xrightarrow{\qquad } X^n \xrightarrow{\qquad } Node X \xrightarrow{\qquad } f_n(X^n) \xrightarrow{\qquad } \hat{H}$$

Type-I Error
$$\pi_0 \triangleq \mathbb{P} \left\{ \hat{\mathsf{H}} \neq 0 \middle| \mathsf{H} = 0 \right\}$$

Error exponent E_0 : $\pi_0 \doteq \exp(-nE_0)$

Type-II Error

$$\pi_{1} \triangleq \mathbb{P}\left\{ \hat{\mathsf{H}} \neq 1 \middle| \mathsf{H} = 1 \right\}$$

Error exponent E_1 : $\pi_1 \doteq \exp(-nE_1)$

Optimal E_1 under $\pi_0 < \epsilon$ or Optimal (E_0, E_1) Trade-offs

 $||f_n||, ||g_n||$: sizes of message sets

 $||f_n||, ||g_n||$: sizes of message sets

Rate Constraints (R_X, R_Y)

 $||f_n|| \leq \exp(nR_X), ||g_n|| \leq \exp(nR_Y)$

 $||f_n||, ||g_n||$: sizes of message sets

Rate Constraints (R_X, R_Y)

 $||f_n|| \leq \exp(nR_X), ||g_n|| \leq \exp(nR_Y)$

e.g. (0,0) zero-rate compression

 $||f_n||, ||g_n||$: sizes of message sets

Rate Constraints (R_X, R_Y)

 $||f_n|| \leq \exp(nR_X), ||g_n|| \leq \exp(nR_Y)$

e.g. (0,0) zero-rate compression

Constant Constraints $(0_{M_X}, 0_{M_Y})$ $\|f_n\| \le M_X, \|g_n\| \le M_Y$

 $||f_n||, ||g_n||$: sizes of message sets

Rate Constraints (*R_X*, *R_Y*)

 $||f_n|| \leq \exp(nR_X), ||g_n|| \leq \exp(nR_Y)$

e.g. (0,0) zero-rate compression

Constant Constraints $(0_{M_X}, 0_{M_Y})$ $||f_n|| \le M_X, ||g_n|| \le M_Y$

e.g. $(0_2, 0_2)$ one-bit compression

Constraints	Opt. E_1 under $\pi_0 < \epsilon$	Opt. (E_0, E_1) Trade-offs
$(R_X, \log \mathcal{Y})$	[Ahlswede & Csiszár, 1986]	
(R_X, R_Y)		
(0,0)		
(0 ₂ , 0 ₂)		
$(0_2, R_Y)$		

Constraints	Opt. E_1 under $\pi_0 < \epsilon$	Opt. (E_0, E_1) Trade-offs
$(R_X, \log \mathcal{Y})$	[Ahlswede & Csiszár, 1986]	
(R_X, R_Y)	[Han, 1987]	
(0,0)	[Han, 1987] √ _D	
(0 ₂ , 0 ₂)	[Han, 1987] 🗸	
$(0_2, R_Y)$	[Han, 1987] 🗸	

Constraints	Opt. E_1 under $\pi_0 < \epsilon$	Opt. (E_0, E_1) Trade-offs
$(R_X, \log \mathcal{Y})$	[Ahlswede & Csiszár, 1986]	[Han & Kobayashi, 1989]
(R_X, R_Y)	[Han, 1987]	[Han & Kobayashi, 1989]
(0,0)	[Han, 1987] √ _D	[Han & Kobayashi, 1989] √ _D
(0 ₂ , 0 ₂)	[Han, 1987] 🗸	[Han & Kobayashi, 1989] 🗸
(0 ₂ , <i>R</i> _Y)	[Han, 1987] 🗸	

Constraints	Opt. E_1 under $\pi_0 < \epsilon$	Opt. (E_0, E_1) Trade-offs
$(R_X, \log \mathcal{Y})$	[Ahlswede & Csiszár, 1986]	[Han & Kobayashi, 1989]
(R_X, R_Y)	[Han, 1987]	[Han & Kobayashi, 1989]
(0, 0)	[Han, 1987] √ D	[Han & Kobayashi, 1989] √ _D
(0, 0)	[Shalaby & Papamarcou, 1992] 🗸	
$(0_2, 0_2)$	[Han, 1987] 🗸	[Han & Kobayashi, 1989] 🗸
$(0_2, R_Y)$	[Han, 1987] 🗸	

Opt. E_1 under $\pi_0 < \epsilon$	Opt. (E_0, E_1) Trade-offs
[Ahlswede & Csiszár, 1986]	[Han & Kobayashi, 1989]
[Han, 1987]	[Han & Kobayashi, 1989]
[Han, 1987] √ D	[Han & Kobayashi, 1989] √ _D
[Shalaby & Papamarcou, 1992] 🗸	[Han & Amari, 1998] 🗸
[Han, 1987] 🗸	[Han & Kobayashi, 1989] 🗸
[Han, 1987] 🗸	
	Opt. E_1 under $\pi_0 < \epsilon$ [Ahlswede & Csiszár, 1986] [Han, 1987] [Han, 1987] \checkmark_D [Shalaby & Papamarcou, 1992] \checkmark_C [Han, 1987] \checkmark

Constraints	Opt. E_1 under $\pi_0 < \epsilon$	Opt. (E_0, E_1) Trade-offs
$(R_X, \log \mathcal{Y})$	[Ahlswede & Csiszár, 1986]	[Han & Kobayashi, 1989]
(R_X, R_Y)	[Han, 1987]	[Han & Kobayashi, 1989]
(0,0)	[Han, 1987] √ D	[Han & Kobayashi, 1989] √ _D
	[Shalaby & Papamarcou, 1992] 🗸	[Han & Amari, 1998] 🗸
$(0_2, 0_2)$	[Han, 1987] 🗸	[Han & Kobayashi, 1989] 🗸
$(0_2, R_Y)$	[Han, 1987] 🗸	

Constraints	Opt. E_1 under $\pi_0 < \epsilon$	Opt. (E_0, E_1) Trade-offs
$(R_X, \log \mathcal{Y})$	[Ahlswede & Csiszár, 1986]	[Han & Kobayashi, 1989]
(R_X, R_Y)	[Han, 1987]	[Han & Kobayashi, 1989]
(0,0)	[Han, 1987] 🗸	[Han & Kobayashi, 1989] √ _D
	[Shalaby & Papamarcou, 1992] 🗸	[Han & Amari, 1998] 🗸
(0 ₂ , 0 ₂)	[Han, 1987] 🗸	[Han & Kobayashi, 1989] 🗸
$(0_2, R_Y)$	[Han, 1987] 🗸	
$(0_{M_X}, 0_{M_Y})$	trivial	[This work]

Constraints	Opt. E_1 under $\pi_0 < \epsilon$	Opt. (E_0, E_1) Trade-offs
$(R_X, \log \mathcal{Y})$	[Ahlswede & Csiszár, 1986]	[Han & Kobayashi, 1989]
(<i>R</i> _X , <i>R</i> _Y)	[Han, 1987]	[Han & Kobayashi, 1989]
(0,0)	[Han, 1987] √ D	[Han & Kobayashi, 1989] √ _D
	[Shalaby & Papamarcou, 1992] 🗸	[Han & Amari, 1998] 🗸
(0 ₂ , 0 ₂)	[Han, 1987] 🗸	[Han & Kobayashi, 1989] 🗸
(0 ₂ , R _Y)	[Han, 1987] 🗸	
(0 ₃ , 0 ₃)	trivial	[This work] ✓

Constraints	Opt. E_1 under $\pi_0 < \epsilon$	Opt. (E_0, E_1) Trade-offs
$(R_X, \log \mathcal{Y})$	[Ahlswede & Csiszár, 1986]	[Han & Kobayashi, 1989]
(R_X, R_Y)	[Han, 1987]	[Han & Kobayashi, 1989]
(0,0)	[Han, 1987] 🗸	[Han & Kobayashi, 1989] √ _D
	[Shalaby & Papamarcou, 1992] 🗸	[Han & Amari, 1998] 🗸
(0 ₂ , 0 ₂)	[Han, 1987] 🗸	[Han & Kobayashi, 1989] 🗸
$(0_2, R_Y)$	[Han, 1987] 🗸	[This work] ✓
(0 ₃ , 0 ₃)	trivial	[This work] ✓

Constraints	Opt. E_1 under $\pi_0 < \epsilon$	Opt. (E_0, E_1) Trade-offs
$(R_X, \log \mathcal{Y})$	[Ahlswede & Csiszár, 1986]	[Han & Kobayashi, 1989]
(R_X, R_Y)	[Han, 1987]	[Han & Kobayashi, 1989]
(0,0)	[Han, 1987] 🗸	[Han & Kobayashi, 1989] √ _D
	[Shalaby & Papamarcou, 1992] 🗸	[Han & Amari, 1998] 🗸
(0 ₂ , 0 ₂)	[Han, 1987] 🗸	[Han & Kobayashi, 1989] 🗸
$(0_2, R_Y)$	[Han, 1987] 🗸	[This work] ✓
(0 ₃ , 0 ₃)	trivial	[This work] ✓

$(0_{M_{\chi}}, 0_{M_{\gamma}})$ – Constant Communication Bits

$$H \xrightarrow{\hspace{1cm}} X^n \xrightarrow{\hspace{1cm}} Node X \xrightarrow{\hspace{1cm}} f_n(X^n) \in [M_X] \xrightarrow{\hspace{1cm}} \hat{H} = dec(f_n, g_n) \xrightarrow{\hspace{1cm}} Y^n \xrightarrow{\hspace{1cm}} Node Y \xrightarrow{\hspace{1cm}} g_n(Y^n) \in [M_Y]$$

$(0_{M_{\chi}}, 0_{M_{\gamma}})$ – Constant Communication Bits

$$H \xrightarrow{\hspace{1cm}} X^n \xrightarrow{\hspace{1cm}} Node X \xrightarrow{\hspace{1cm}} f_n(X^n) \in [M_X] \xrightarrow{\hspace{1cm}} \hat{H} = dec(f_n, g_n) \xrightarrow{\hspace{1cm}} Y^n \xrightarrow{\hspace{1cm}} Node Y \xrightarrow{\hspace{1cm}} g_n(Y^n) \in [M_Y]$$

 $[M] \triangleq \{0, 1, \dots, M-1\}$: Message Set with M Symbols

$(0_{M_X}, 0_{M_Y})$ – Constant Communication Bits

$$H \xrightarrow{\hspace{1cm}} X^n \xrightarrow{\hspace{1cm}} Node X \xrightarrow{\hspace{1cm}} f_n(X^n) \in [M_X] \xrightarrow{\hspace{1cm}} \hat{H} = dec(f_n, g_n) \xrightarrow{\hspace{1cm}} Y^n \xrightarrow{\hspace{1cm}} Node Y \xrightarrow{\hspace{1cm}} g_n(Y^n) \in [M_Y]$$

 $[M] \triangleq \{0, 1, \dots, M - 1\}$: Message Set with M Symbols **Design of**
$$H \xrightarrow{f_n(X^n) \in [M_X]} \hat{H} = \operatorname{dec}(f_n, g_n)$$

$$H \xrightarrow{f_n(X^n) \in [M_X]} \hat{H} = \operatorname{dec}(f_n, g_n)$$

• Encoders
$$f_n \colon \mathfrak{X}^n \to [M_X], g_n \colon \mathfrak{Y}^n \to [M_Y]$$

$$H \xrightarrow{f_n(X^n) \in [M_X]} \hat{H} = \operatorname{dec}(f_n, g_n)$$

- Encoders $f_n \colon \mathfrak{X}^n \to [M_X], g_n \colon \mathfrak{Y}^n \to [M_Y]$
 - extracting "informative" bits from sequences

$$H \xrightarrow{\hspace{1cm}} X^n \longrightarrow \operatorname{Node} X \xrightarrow{\hspace{1cm}} f_n(X^n) \in [M_X] \xrightarrow{\hspace{1cm}} \hat{H} = \operatorname{dec}(f_n, g_n) \xrightarrow{\hspace{1cm}} Y^n \longrightarrow \operatorname{Node} Y \xrightarrow{\hspace{1cm}} g_n(Y^n) \in [M_Y]$$

- Encoders $f_n \colon \mathfrak{X}^n \to [M_X], g_n \colon \mathfrak{Y}^n \to [M_Y]$
 - extracting "informative" bits from sequences
- Decoder dec(·, ·): Boolean table on $[M_X] \times [M_Y]$

$$H \xrightarrow{f_n(X^n) \in [M_X]} \hat{H} = \operatorname{dec}(f_n, g_n)$$

- Encoders $f_n \colon \mathfrak{X}^n \to [M_X], g_n \colon \mathfrak{Y}^n \to [M_Y]$
 - extracting "informative" bits from sequences
- Decoder dec(·, ·): Boolean table on $[M_X] \times [M_Y]$
 - optimal fusion rule

$$H \xrightarrow{f_n(X^n) \in [M_X]} \hat{H} = \operatorname{dec}(f_n, g_n)$$

 $[M] \triangleq \{0, 1, \dots, M - 1\}$: Message Set with M Symbols **Design of**

- Encoders $f_n \colon \mathfrak{X}^n \to [M_X], g_n \colon \mathfrak{Y}^n \to [M_Y]$
 - extracting "informative" bits from sequences
- Decoder dec(·, ·): Boolean table on $[M_X] \times [M_Y]$
 - optimal fusion rule

Distributed Processing & Communication Constraints

Sequence = Type + "Order"

```
Sequence = Type + "Order" e.g., x^n \in \mathcal{X}^n
```

```
Sequence = Type + "Order"
e.g., x^n \in \mathfrak{X}^n
```

- - Type: empirical distribution \hat{P}_{x^n}

Sequence = Type + "Order"

e.g., $x^n \in \mathfrak{X}^n$

- Type: empirical distribution \hat{P}_{X^n}
- Order: index of x^n in sequences of type \hat{P}_{x^n}

${\tt Sequence} = {\tt Type} + {\tt ``Order''}$

e.g., $x^n \in \mathfrak{X}^n$

- Type: empirical distribution \hat{P}_{X^n}
- Order: index of x^n in sequences of type \hat{P}_{x^n}

Example: binary sequences of length n = 3

Type \leftrightarrow # of ones	0	1	2	3
Sequences	000			000

Sequence = Type + "Order" e.g., $x^n \in \mathcal{X}^n$

- Type: empirical distribution \hat{P}_{X^n}
- Order: index of x^n in sequences of type \hat{P}_{x^n}

Example: binary sequences of length n = 3

Type \leftrightarrow # of ones	0	1	2	3
Sequences	000			000

• # of types = poly(n)

• # of seqs =
$$|\mathfrak{X}|^n = \exp(n \log |\mathfrak{X}|)$$

Sequence = Type + "Order" e.g., $x^n \in \mathcal{X}^n$

- Type: empirical distribution \hat{P}_{X^n}
- Order: index of x^n in sequences of type \hat{P}_{x^n}

Example: binary sequences of length n = 3

Type \leftrightarrow # of ones	0	1	2	3
Sequences	000			000

Type Requires Much Less Bits to Describe

• # of types = poly(n)

• # of seqs =
$$|\mathcal{X}|^n = \exp(n \log |\mathcal{X}|)$$

Type-based Encoders

Type-based Encoders

Type-based Encoders

Type-encoding Functions $\cdot \ \theta_X \colon \mathcal{P}^X \to [M_X]$ $\cdot \ \theta_Y \colon \mathcal{P}^Y \to [M_Y]$

Type-based Encoders

Seq. Space $(\mathfrak{X}^n, \mathfrak{Y}^n) \rightarrow \text{Dist. Space } (\mathfrak{P}^{\mathfrak{X}}, \mathfrak{P}^{\mathfrak{Y}})$

Type-based Encoders

Seq. Space $(\mathfrak{X}^n, \mathfrak{Y}^n) \rightarrow \text{Dist. Space } (\mathfrak{P}^{\mathfrak{X}}, \mathfrak{P}^{\mathfrak{Y}})$ (Single-letter Solution)

Type-based Encoders

Seq. Space $(\mathfrak{X}^n, \mathfrak{Y}^n) \rightarrow \text{Dist. Space } (\mathfrak{P}^{\mathfrak{X}}, \mathfrak{P}^{\mathfrak{Y}})$ (Single-letter Solution)

Optimality?

Given zero-rate encoders f_n , g_n , and a decoder dec, we can construct type-based encoders \tilde{f}_n , \tilde{g}_n , such that

Given zero-rate encoders f_n , g_n , and a decoder dec, we can construct type-based encoders \tilde{f}_n , \tilde{g}_n , such that

- range(\tilde{f}_n) = range(f_n)
- · range(\tilde{g}_n) = range(g_n)

Given zero-rate encoders f_n , g_n , and a decoder dec, we can construct type-based encoders \tilde{f}_n , \tilde{g}_n , such that

- range(\tilde{f}_n) = range(f_n)
- · range(\tilde{g}_n) = range(g_n)
- $(\tilde{f}_n, \tilde{g}_n, \text{dec})$ achieves better error exponents

Given zero-rate encoders f_n , g_n , and a decoder dec, we can construct type-based encoders \tilde{f}_n , \tilde{g}_n , such that

- range(\tilde{f}_n) = range(f_n)
- · range(\tilde{g}_n) = range(g_n)
- $(\tilde{f}_n, \tilde{g}_n, \text{dec})$ achieves better error exponents

Proof An application of the blowing up lemma.

• Encoding $\mathcal{P}^{\mathcal{X}} \longrightarrow [M_X], \mathcal{P}^{\mathcal{Y}} \longrightarrow [M_Y]$ • Decoding $[M_X] \times [M_Y] \longrightarrow \{0, 1\}$

• Encoding $\mathcal{P}^{\chi} \xrightarrow{\theta_{\chi}} [M_{\chi}], \mathcal{P}^{\mathcal{Y}} \xrightarrow{\theta_{Y}} [M_{Y}]$ • Decoding $[M_{\chi}] \times [M_{Y}] \xrightarrow{\text{dec}} \{0, 1\}$

• Encoding $\mathcal{P}^{\mathcal{X}} \xrightarrow{\theta_{X}} [M_{X}], \mathcal{P}^{\mathcal{Y}} \xrightarrow{\theta_{Y}} [M_{Y}]$ • Decoding $[M_{X}] \times [M_{Y}] \xrightarrow{\text{dec}} \{0, 1\}$

 \hat{H} depends only on marginal types $\hat{P}_{X^n}, \hat{P}_{Y^n}$

 \hat{H} depends only on marginal types $\hat{P}_{X^n}, \hat{P}_{Y^n}$

• For sequences (x^n, y^n) with marginal types (Q_X, Q_Y) :

 $\hat{H}(Q_X, Q_Y) = dec(\theta_X(Q_X), \theta_Y(Q_Y))$

 \hat{H} depends only on marginal types $\hat{P}_{X^n}, \hat{P}_{Y^n}$

• For sequences (x^n, y^n) with marginal types (Q_X, Q_Y) :

 $\hat{H}(Q_X, Q_Y) = dec(\theta_X(Q_X), \theta_Y(Q_Y))$

How to design encoders (quantize types)?

Hypothesis Testing on $\mathcal{X} = \{0, 1, 2\}, P_X^{(0)} = (1/8, 1/8, 3/4), P_X^{(1)} = (3/8, 3/8, 1/4)$

Hypothesis Testing on $\mathcal{X} = \{0, 1, 2\}, P_X^{(0)} = (1/8, 1/8, 3/4), P_X^{(1)} = (3/8, 3/8, 1/4)$

Hypothesis Testing on
$$\mathcal{X} = \{0, 1, 2\}, P_X^{(0)} = (1/8, 1/8, 3/4), P_X^{(1)} = (3/8, 3/8, 1/4)$$

Neyman-Pearson Test

Hypothesis Testing on
$$\mathfrak{X} = \{0, 1, 2\}, \mathsf{P}_X^{(0)} = (1/8, 1/8, 3/4), \mathsf{P}_X^{(1)} = (3/8, 3/8, 1/4)$$

Neyman-Pearson Test

Hoeffding's Test

Sequences with marginal types (Q_X, Q_Y)

• Associated probability:

$$D_i^*(Q_X, Q_Y) \triangleq \min_{\substack{Q_{XY}: [Q_{XY}]_X = Q_X \\ [Q_{XY}]_Y = Q_Y}} D(Q_{XY} \| P_{XY}^{(i)})$$

$$\mathbb{P}\left\{\left(\hat{P}_{X^{n}},\hat{P}_{Y^{n}}\right)=\left(Q_{X},Q_{Y}\right)\middle|\mathsf{H}=i\right\}\doteq\exp\left(-n\cdot D_{i}^{*}(Q_{X},Q_{Y})\right)$$

Sequences with marginal types (Q_X, Q_Y)

• Associated probability:

$$D_i^*(Q_X, Q_Y) \triangleq \min_{\substack{Q_{XY}: [Q_{XY}]_X = Q_X \\ [Q_{XY}]_Y = Q_Y}} D(Q_{XY} || P_{XY}^{(i)})$$

$$\mathbb{P}\left\{\left(\hat{P}_{X^{n}},\hat{P}_{Y^{n}}\right)=\left(Q_{X},Q_{Y}\right)\middle|\mathsf{H}=i\right\}\doteq\exp\left(-n\cdot\mathsf{D}_{i}^{*}(Q_{X},Q_{Y})\right)$$

• if $\hat{H}(Q_X, Q_Y) \neq i$, E_i will be at least $D_i^*(Q_X, Q_Y)$

Sequences with marginal types (Q_X, Q_Y)

• Associated probability:

$$D_i^*(Q_X, Q_Y) \triangleq \min_{\substack{Q_{XY}: [Q_{XY}]_X = Q_X \\ [Q_{XY}]_Y = Q_Y}} D(Q_{XY} || P_{XY}^{(i)})$$

$$\mathbb{P}\left\{\left(\hat{P}_{X^{n}},\hat{P}_{Y^{n}}\right)=\left(Q_{X},Q_{Y}\right)\middle|\mathsf{H}=i\right\}\doteq\exp\left(-n\cdot D_{i}^{*}(Q_{X},Q_{Y})\right)$$

• if $\hat{H}(Q_X, Q_Y) \neq i$, E_i will be at least $D_i^*(Q_X, Q_Y)$

Divergence ball $\mathcal{D}_i(t) \triangleq \{(Q_X, Q_Y) : D_i^*(Q_X, Q_Y) < t\}$

Sequences with marginal types (Q_X, Q_Y)

• Associated probability:

$$D_i^*(Q_X, Q_Y) \triangleq \min_{\substack{Q_{XY}: [Q_{XY}]_X = Q_X \\ [Q_{XY}]_Y = Q_Y}} D(Q_{XY} \| P_{XY}^{(i)})$$

$$\mathbb{P}\left\{\left(\hat{P}_{X^{n}},\hat{P}_{Y^{n}}\right)=\left(Q_{X},Q_{Y}\right)\middle|\mathsf{H}=i\right\}\doteq\exp\left(-n\cdot D_{i}^{*}(Q_{X},Q_{Y})\right)$$

• if $\hat{H}(Q_X, Q_Y) \neq i$, E_i will be at least $D_i^*(Q_X, Q_Y)$

Divergence ball $\mathcal{D}_i(t) \triangleq \{(Q_X, Q_Y) : D_i^*(Q_X, Q_Y) < t\}$

• Center: $(P_X^{(i)}, P_Y^{(i)})$

Sequences with marginal types (Q_X, Q_Y)

• Associated probability:

$$D_i^*(Q_X, Q_Y) \triangleq \min_{\substack{Q_{XY}: [Q_{XY}]_X = Q_X \\ [Q_{XY}]_Y = Q_Y}} D(Q_{XY} || P_{XY}^{(i)})$$

$$\mathbb{P}\left\{\left(\hat{P}_{X^{n}},\hat{P}_{Y^{n}}\right)=\left(Q_{X},Q_{Y}\right)\middle|\mathsf{H}=i\right\}\doteq\exp\left(-n\cdot D_{i}^{*}(Q_{X},Q_{Y})\right)$$

• if $\hat{H}(Q_X, Q_Y) \neq i$, E_i will be at least $D_i^*(Q_X, Q_Y)$

Divergence ball $\mathcal{D}_i(t) \triangleq \{(Q_X, Q_Y) : D_i^*(Q_X, Q_Y) < t\}$

- Center: $(P_X^{(i)}, P_Y^{(i)})$
- "Radius": t
ERROR EXPONENT ANALYSIS

Sequences with marginal types (Q_X, Q_Y)

• Associated probability:

$$D_i^*(Q_X, Q_Y) \triangleq \min_{\substack{Q_{XY}: [Q_{XY}]_X = Q_X \\ [Q_{XY}]_Y = Q_Y}} D(Q_{XY} || P_{XY}^{(i)})$$

$$\mathbb{P}\left\{\left(\hat{P}_{X^{n}},\hat{P}_{Y^{n}}\right)=\left(Q_{X},Q_{Y}\right)\middle|\mathsf{H}=i\right\}\doteq\exp\left(-n\cdot D_{i}^{*}(Q_{X},Q_{Y})\right)$$

• if $\hat{H}(Q_X, Q_Y) \neq i$, E_i will be at least $D_i^*(Q_X, Q_Y)$

Divergence ball $\mathcal{D}_i(t) \triangleq \{(Q_X, Q_Y) : D_i^*(Q_X, Q_Y) < t\}$

- Center: $(P_X^{(i)}, P_Y^{(i)})$
- "Radius": t

 (E_0, E_1) is achievable, iff $\hat{H}(\mathcal{D}_0(E_0)) = 0$, $\hat{H}(\mathcal{D}_1(E_1)) = 1$

 $\hat{H}(Q_X, Q_Y) = \mathsf{dec}(\theta_X(Q_X), \theta_Y(Q_Y))$

• Encoding

$$\mathcal{P}^{\mathcal{X}} \xrightarrow{\boldsymbol{\theta}_{X}} [M_{X}], \mathcal{P}^{\mathcal{Y}} \xrightarrow{\boldsymbol{\theta}_{Y}} [M_{Y}]$$

- Decoding
 - $[M_X] \times [M_Y] \xrightarrow{\mathsf{dec}} \{0,1\}$

 $\hat{H}(Q_X, Q_Y) = dec(\theta_X(Q_X), \theta_Y(Q_Y))$

 \cdot Encoding

$$\mathcal{P}^{\mathcal{X}} \xrightarrow{\boldsymbol{\theta}_{X}} [M_{X}], \mathcal{P}^{\mathcal{Y}} \xrightarrow{\boldsymbol{\theta}_{Y}} [M_{Y}]$$

- Decoding
 - $[M_X] \times [M_Y] \xrightarrow{\mathsf{dec}} \{0,1\}$

Goal: choose θ_X, θ_Y and dec, such that

- all points in $\mathcal{D}_0(E_0)$ are decoded as 0
- all points in $\mathcal{D}_1(E_1)$ are decoded as 1

 $\hat{H}(Q_X, Q_Y) = \det(\theta_X(Q_X), \theta_Y(Q_Y))$

Encoding

$$\mathcal{P}^{\mathcal{X}} \xrightarrow{\boldsymbol{\theta}_{X}} [M_{X}], \mathcal{P}^{\mathcal{Y}} \xrightarrow{\boldsymbol{\theta}_{Y}} [M_{Y}]$$

- Decoding
 - $[M_X] \times [M_Y] \xrightarrow{\text{dec}} \{0, 1\}$

Goal: choose θ_X, θ_Y and dec, such that

• all points in $\mathcal{D}_0(E_0)$ are decoded as 0

Н

• all points in $\mathcal{D}_1(E_1)$ are decoded as 1

ON DISTRIBUTED PIZZA TOPPING WITH FINITE INGREDIENTS

Cook X 🚎: top based on *x* • (a), (b) Cook Y 🚎: top based on *y* • (a), (c) Goal: distinguishable pizzas

Cook X 🚎: top based on x • ,) Cook Y 🚎: top based on y •),) Goal: distinguishable pizzas

Cook X 🛒: top based on x • (a), (b) Cook Y 🚎: top based on y • (a), (c) Goal: distinguishable pizzas

Cook X 🚎: top based on x • ,) Cook Y 🚎: top based on y •),) Goal: distinguishable pizzas

Cook X 😨: top based on x • 🕘, 🍤 Cook Y 😨: top based on y • 🍋, 🥦

Cook X 🛒: top based on x • (a), (b) Cook Y 🚎: top based on y • (a), (c),

Cook X 🛒: top based on *x* • (a), (b) Cook Y 🛒: top based on *y* • (a), 🛸

Cook X 🕵: top based on x • (a), (b) Cook Y 🕵: top based on y • (a), (c), Goal: distinguishable pizzas

Cook X 🛒: top based on *x* • (a), (b) Cook Y 🚎: top based on *y* • (a), 🛸

Cook X 🕵: top based on x • 🕘, 🍤 Cook Y 🕵: top based on y • 🍋, 🛸

Cook X 🕵: top based on x • 🙆, 🍤 Cook Y 🕵: top based on y • 🍋, 🛸

Cook X 🕵: top based on x • 🕘, 🍤 Cook Y 🕵: top based on y • 🍋, 🛸

Cook X 🚎: top based on x • (a), (5) Cook Y 🚎: top based on y • (a), (5) Goal: distinguishable pizzas

Ingredient Table

One-bit Compression $M_X = M_Y = 2$ **Limiting Case:** $M_X = M_Y = \infty$

 $\begin{array}{c|cccc} 0 & 0 & 0 \\ 1 & 0 & 1 \end{array} \leftrightarrow$

1

1

Limiting Case: $M_X = M_Y = \infty$

 (E_0, E_1) is achievable iff

 $\mathcal{D}_0(E_0) \cap \mathcal{D}_1(E_1) = \emptyset$

1

0

Limiting Case: $M_X = M_Y = \infty$

 (E_0, E_1) is achievable iff

 $\mathcal{D}_0(E_0)\cap\mathcal{D}_1(E_1)=\emptyset$

zero-rate compression (0,0)

GEOMETRIC CHARACTERIZATION OF ERROR EXPONENTS

Add more symbols: $(0_2, 0_2) \rightarrow (0_3, 0_3)$

Add more symbols: $(0_2, 0_2) \rightarrow (0_3, 0_3)$

Add more symbols: $(0_2, 0_2) \rightarrow (0_3, 0_3)$

Add more symbols: $(0_2, 0_2) \rightarrow (0_3, 0_3)$

Use added symbols to "describe" &

Add more symbols: $(0_2, 0_2) \rightarrow (0_3, 0_3)$

Add more symbols: $(0_2, 0_2) \rightarrow (0_3, 0_3)$

 $dec(m_X, m_Y) = \mathbb{1}\{m_X + m_Y \ge M_X \land M_Y\}$

 $dec(m_X, m_Y) = \mathbb{1}\{m_X + m_Y \ge M_X \land M_Y\}$

• m_X, m_Y : discrete-valued beliefs

$dec(m_X, m_Y) = \mathbb{1}\{m_X + m_Y \ge M_X \land M_Y\}$

- m_X, m_Y : discrete-valued beliefs
- $m_X + m_Y$: fused belief

 $dec(m_X, m_Y) = \mathbb{1}\{m_X + m_Y \ge M_X \land M_Y\}$

- m_X, m_Y : discrete-valued beliefs
- $m_X + m_Y$: fused belief
- $M_X \wedge M_Y = \min\{M_X, M_Y\}$: threshold

 $dec(m_X, m_Y) = \mathbb{1}\{m_X + m_Y \ge M_X \land M_Y\}$

- m_X, m_Y : discrete-valued beliefs
- $m_X + m_Y$: fused belief
- $M_X \wedge M_Y = \min\{M_X, M_Y\}$: threshold

"Reduction": Recursive Croppings

 $dec(m_X, m_Y) = \mathbb{1}\{m_X + m_Y \ge M_X \land M_Y\}$

- m_X, m_Y : discrete-valued beliefs
- $m_X + m_Y$: fused belief
- $M_X \wedge M_Y = \min\{M_X, M_Y\}$: threshold

"Reduction": Recursive Croppings

 $dec(m_X, m_Y) = \mathbb{1}\{m_X + m_Y \ge M_X \land M_Y\}$

- m_X, m_Y : discrete-valued beliefs
- $m_X + m_Y$: fused belief
- $M_X \wedge M_Y = \min\{M_X, M_Y\}$: threshold

"Reduction": Recursive Croppings

 $dec(m_X, m_Y) = \mathbb{1}\{m_X + m_Y \ge M_X \land M_Y\}$

- m_X, m_Y : discrete-valued beliefs
- $m_X + m_Y$: fused belief
- $M_X \wedge M_Y = \min\{M_X, M_Y\}$: threshold

"Reduction": Recursive Croppings

Optimality?

 $dec(m_X, m_Y) = \mathbb{1}\{m_X + m_Y \ge M_X \land M_Y\}$

- m_X, m_Y : discrete-valued beliefs
- $m_X + m_Y$: fused belief
- $M_X \wedge M_Y = \min\{M_X, M_Y\}$: threshold

"Reduction": Recursive Croppings

Threshold DECs are Optimal if

 $dec(m_X, m_Y) = \mathbb{1}\{m_X + m_Y \ge M_X \land M_Y\}$

- m_X, m_Y : discrete-valued beliefs
- $m_X + m_Y$: fused belief
- $M_X \wedge M_Y = \min\{M_X, M_Y\}$: threshold

"Reduction": Recursive Croppings

Threshold DECs are Optimal if

 $\min\{M_X,M_Y\}=2$

 $dec(m_X, m_Y) = \mathbb{1}\{m_X + m_Y \ge M_X \land M_Y\}$

- m_X, m_Y : discrete-valued beliefs
- $m_X + m_Y$: fused belief
- $M_X \wedge M_Y = \min\{M_X, M_Y\}$: threshold

"Reduction": Recursive Croppings

Threshold DECs are Optimal if

 $\min\{M_X, M_Y\} = 2$ or $(M_X, M_Y) = (3, 3)$

 $dec(m_X, m_Y) = \mathbb{1}\{m_X + m_Y \ge M_X \land M_Y\}$

- m_X, m_Y : discrete-valued beliefs
- $m_X + m_Y$: fused belief
- $M_X \wedge M_Y = \min\{M_X, M_Y\}$: threshold

"Reduction": Recursive Croppings

Threshold DECs are Optimal if

 $\min\{M_X, M_Y\} = 2$

or
$$(M_X, M_Y) = (3, 3)$$

or $P_{XY}^{(i)} = P_X^{(i)} P_Y^{(i)}$ for some $i \in \{0, 1\}$

 $dec(m_X, m_Y) = \mathbb{1}\{m_X + m_Y \ge M_X \land M_Y\}$

- m_X, m_Y : discrete-valued beliefs
- $m_X + m_Y$: fused belief
- $M_X \wedge M_Y = \min\{M_X, M_Y\}$: threshold

"Reduction": Recursive Croppings

Threshold DECs are Optimal if

 $\min\{M_X, M_Y\} = 2$

or
$$(M_X, M_Y) = (3, 3)$$

or $P_{XY}^{(i)} = P_X^{(i)} P_Y^{(i)}$ for some $i \in \{0, 1\}$

Example: $M_X = M_Y = 2$

 $dec(m_X, m_Y) = \mathbb{1}\{m_X + m_Y \ge M_X \land M_Y\}$

- m_X, m_Y : discrete-valued beliefs
- $m_X + m_Y$: fused belief
- $M_X \wedge M_Y = \min\{M_X, M_Y\}$: threshold

"Reduction": Recursive Croppings

Threshold DECs are Optimal if

 $\min\{M_X, M_Y\} = 2$

or
$$(M_X, M_Y) = (3, 3)$$

or $P_{XY}^{(i)} = P_X^{(i)} P_Y^{(i)}$ for some $i \in \{0, 1\}$

Example: $M_X = M_Y = 2$

What if $M_X = M_Y = 4$?

 $dec(m_X, m_Y) = \mathbb{1}\{m_X + m_Y \ge M_X \land M_Y\}$

- m_X, m_Y : discrete-valued beliefs
- $m_X + m_Y$: fused belief
- $M_X \wedge M_Y = \min\{M_X, M_Y\}$: threshold

"Reduction": Recursive Croppings

Threshold DECs are Optimal if

 $\min\{M_X, M_Y\} = 2$

or
$$(M_X, M_Y) = (3, 3)$$

or $P_{XY}^{(i)} = P_X^{(i)} P_Y^{(i)}$ for some $i \in \{0, 1\}$

Example: $M_X = M_Y = 2$

What if
$$M_X = M_Y = 4$$
 ?

Threshold DEC requires \geq 6 Symbols

Threshold DEC requires \geq 6 Symbols

Can we do better?

$$\begin{aligned} \mathcal{X} &= \mathcal{Y} = \{0, 1, 2\} \\ P_X^{(0)} &= P_Y^{(0)} = (1/8, 1/8, 3/4) \\ P_X^{(1)} &= P_Y^{(1)} = (3/8, 3/8, 1/4) \\ P_{XY}^{(i)} &= P_X^{(i)} P_Y^{(i)}, i \in \{0, 1\} \end{aligned}$$

$$\begin{aligned} \mathcal{X} &= \mathcal{Y} = \{0, 1, 2\} \\ P_X^{(0)} &= P_Y^{(0)} = (1/8, 1/8, 3/4) \\ P_X^{(1)} &= P_Y^{(1)} = (3/8, 3/8, 1/4) \\ P_{XY}^{(i)} &= P_X^{(i)} P_Y^{(i)}, i \in \{0, 1\} \end{aligned}$$

Local Decision at X: Neyman-Pearson

$$\mathcal{X} = \mathcal{Y} = \{0, 1, 2\}$$

$$P_X^{(0)} = P_Y^{(0)} = (1/8, 1/8, 3/4)$$

$$P_X^{(1)} = P_Y^{(1)} = (3/8, 3/8, 1/4)$$

$$P_{XY}^{(i)} = P_X^{(i)} P_Y^{(i)}, i \in \{0, 1\}$$

Local Decision at X: Hoeffding (Generalized Likelihood Ratio Test)

$$\begin{aligned} \mathcal{X} &= \mathcal{Y} = \{0, 1, 2\} \\ P_X^{(0)} &= P_Y^{(0)} = (1/8, 1/8, 3/4) \\ P_X^{(1)} &= P_Y^{(1)} = (3/8, 3/8, 1/4) \\ P_{XY}^{(i)} &= P_X^{(i)} P_Y^{(i)}, i \in \{0, 1\} \end{aligned}$$

• Comm. Constraints: (07, 07)

$$\begin{aligned} \mathcal{X} &= \mathcal{Y} = \{0, 1, 2\} \\ P_X^{(0)} &= P_Y^{(0)} = (1/8, 1/8, 3/4) \\ P_X^{(1)} &= P_Y^{(1)} = (3/8, 3/8, 1/4) \\ P_{XY}^{(i)} &= P_X^{(i)} P_Y^{(i)}, i \in \{0, 1\} \end{aligned}$$

- Comm. Constraints: (07, 07)
- dec: $(m_X, m_Y) \mapsto \mathbb{1}\{m_X + m_Y \ge 7\}$

$$\begin{aligned} & \mathcal{X} = \mathcal{Y} = \{0, 1, 2\} \\ P_X^{(0)} = P_Y^{(0)} = (1/8, 1/8, 3/4) \\ P_X^{(1)} = P_Y^{(1)} = (3/8, 3/8, 1/4) \\ P_{XY}^{(i)} = P_X^{(i)} P_Y^{(i)}, i \in \{0, 1\} \end{aligned}$$

- Comm. Constraints: (07, 07)
- dec: $(m_X, m_Y) \mapsto \mathbb{1}\{m_X + m_Y \ge 7\}$
- $(E_0, E_1) = (0.3, 0.25)$

$$\begin{aligned} \mathcal{X} &= \mathcal{Y} = \{0, 1, 2\} \\ P_X^{(0)} &= P_Y^{(0)} = (1/8, 1/8, 3/4) \\ P_X^{(1)} &= P_Y^{(1)} = (3/8, 3/8, 1/4) \\ P_{XY}^{(i)} &= P_X^{(i)} P_Y^{(i)}, i \in \{0, 1\} \end{aligned}$$

- Comm. Constraints: (07, 07)
- dec: $(m_X, m_Y) \mapsto \mathbb{1}\{m_X + m_Y \ge 7\}$
- $(E_0, E_1) = (0.3, 0.25)$

DHT: Type-encoding Function

$$\begin{aligned} \mathcal{X} &= \mathcal{Y} = \{0, 1, 2\} \\ P_X^{(0)} &= P_Y^{(0)} = (1/8, 1/8, 3/4) \\ P_X^{(1)} &= P_Y^{(1)} = (3/8, 3/8, 1/4) \\ P_{XY}^{(i)} &= P_X^{(i)} P_Y^{(i)}, i \in \{0, 1\} \end{aligned}$$

- Comm. Constraints: (07, 07)
- dec: $(m_X, m_Y) \mapsto \mathbb{1}\{m_X + m_Y \ge 7\}$
- $(E_0, E_1) = (0.3, 0.25)$

DHT: Type-encoding Function

Quantization of LLR is not optimal!

$$\mathcal{X} = \mathcal{Y} = \{0, 1\}$$

$$P_{XY}^{(0)} = \begin{bmatrix} 1/6 & 1/6 \\ 1/6 & 1/2 \end{bmatrix}, P_{XY}^{(1)} = \begin{bmatrix} 1/2 & 1/6 \\ 1/6 & 1/6 \end{bmatrix}$$

 \overrightarrow{E}_0

$$\mathcal{X} = \mathcal{Y} = \{0, 1\}$$

$$P_{XY}^{(0)} = \begin{bmatrix} 1/6 & 1/6\\ 1/6 & 1/2 \end{bmatrix}, P_{XY}^{(1)} = \begin{bmatrix} 1/2 & 1/6\\ 1/6 & 1/6 \end{bmatrix}$$

• Local Decision: $(0_1, \log 2)$ or $(\log 2, 0_1)$

$$\mathfrak{X} = \mathfrak{Y} = \{0, 1\}$$

$$P_{XY}^{(0)} = \begin{bmatrix} 1/6 & 1/6\\ 1/6 & 1/2 \end{bmatrix}, P_{XY}^{(1)} = \begin{bmatrix} 1/2 & 1/6\\ 1/6 & 1/6 \end{bmatrix}$$

- Local Decision: $(0_1, \log 2)$ or $(\log 2, 0_1)$
- One-bit: (0₂, 0₂)

$$\mathfrak{X} = \mathfrak{Y} = \{0, 1\}$$

$$P_{XY}^{(0)} = \begin{bmatrix} 1/6 & 1/6 \\ 1/6 & 1/2 \end{bmatrix}, P_{XY}^{(1)} = \begin{bmatrix} 1/2 & 1/6 \\ 1/6 & 1/6 \end{bmatrix}$$

- Local Decision: $(0_1, \log 2)$ or $(\log 2, 0_1)$
- One-bit: (0₂, 0₂)
- One-trit: (0₃, 0₃)

$$\mathfrak{X} = \mathfrak{Y} = \{0, 1\}$$

$$P_{XY}^{(0)} = \begin{bmatrix} 1/6 & 1/6\\ 1/6 & 1/2 \end{bmatrix}, P_{XY}^{(1)} = \begin{bmatrix} 1/2 & 1/6\\ 1/6 & 1/6 \end{bmatrix}$$

- Local Decision: $(0_1, \log 2)$ or $(\log 2, 0_1)$
- One-bit: (0₂, 0₂)
- One-trit: (0₃, 0₃)
- Non-distributed: (log 2, log 2)

• Optimality of Encoding Types: Sequence Space \rightarrow Distribution Space

- Optimality of Encoding Types: Sequence Space ightarrow Distribution Space
- Geometric Interpretation: Separating Divergence Balls

- Optimality of Encoding Types: Sequence Space ightarrow Distribution Space
- Geometric Interpretation: Separating Divergence Balls
- Threshold Decoders: Error Exponents & Optimality