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Abstract— We study the problem of learning feature repre-
sentations from a pair of random variables, where we focus on
the representations that are induced by their dependence. We
provide sufficient and necessary conditions for such dependence
induced representations, and illustrate their connections to
Hirschfeld—Gebelein-Rényi (HGR) maximal correlation func-
tions and minimal sufficient statistics. We characterize a large
family of loss functions that can learn dependence induced
representations, including cross entropy, hinge loss, and their
regularized variants. In particular, we show that the features
learned from this family can be expressed as the composition of
a loss-dependent function and the maximal correlation function,
which reveals a key connection between representations learned
from different losses. Our development also gives a statistical
interpretation of the neural collapse phenomenon observed in
deep classifiers. Finally, we present the learning design based
on the feature separation, which allows hyperparameter tuning
during inference.

I. INTRODUCTION

Deep learning techniques [1] have demonstrated signif-
icant progress in extracting useful information from high-
dimensional structured data. The learned feature representa-
tions can be easily adapted to different learning objectives,
data modalities, or learning tasks. Compared with the prac-
tical successes, the understanding of the learned represen-
tations is rather limited: though it is widely acknowledged
that such representations contain useful information for un-
derstanding the statistical behaviors of data [2], theoretical
analyses of learned representations are still challenging. In
particular, the difficulty comes from the unknown compli-
cated structures behind high-dimensional data and the huge
design space of practical learning algorithms. It is often
difficult to obtain analytical solutions to the representations,
except for a few cases with principled designs [3]. Theoret-
ical analyses often rely on additional assumptions, making
the results restricted to specific scenarios.

In contrast to the difficulty faced by theoretical character-
izations, deep learning practices suggest the other extreme:
despite the huge design space of loss functions and hyper-
parameter settings, the learned representations can still be
reused or adapted to different setups; empirical studies also
indicate that representations obtained from completely differ-
ent methods can be highly similar [4]. A better understanding
of this similarity can provide key insights on the learning
mechanism and lead to more efficient learning designs.
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In this paper, we tackle the representation learning prob-
lem from a statistical perspective. We consider learning rep-
resentations from a pair of variables X,Y and focus on the
representations determined only by the X — Y dependence.
We refer to such representations as dependence induced
representations, formalized as the representations invariant
to transformations that preserve the dependence structure.
We provide sufficient and necessary conditions for such
representations and demonstrate their deep connections to
the Hirschfeld—Gebelein—Rényi (HGR) maximal correlation
functions and the notion of minimal sufficiency. Furthermore,
we characterize a family of loss functions, termed D-losses,
which can be used for learning dependence induced rep-
resentations. Specifically, we demonstrate that the optimal
feature is the composition of a loss-dependent term and the
maximal correlation function, revealing the key connection
between different feature representations. We also show that
D-losses cover a large class of practical loss functions,
including cross entropy and hinge loss as special cases. Our
characterization also provides a statistical interpretation of
the neural collapse behavior [5] in training deep classifiers.
Based on our developments, we propose a design of feature
adapters that allow hyperparameter tuning during inference.

II. NOTATIONS AND PRELIMINARIES

For a random variable Z, we use Z to denote the corre-
sponding alphabet and use z to denote a specific value in Z.
We use Pz to denote the probability distributiorﬂ of Z and
denote the collection of probability distributions supported
on Z by P*. For n > 1, we denote [n] = {1,2,...,n}.

A. Feature Space and Representation Learning

Given data Z with domain Z, we refer to the map-
pings from Z to vector space as feature functions or fea-
ture mappings and refer to the mapped values as feature
representations (or simply, features). In particular, we use
F2 2 {2 — R} to denote the collection of one-dimensional
feature functions, and denote the collection of k-dimensional
features by F¥ £ (F2)" = {Z — RF} for each k > 1. We
use F3 = (J, >, F¥ to denote all such feature functions. For
f,h € Fz, we denote Ay, £ E [f(Z)h™(Z)]. Specifically,
we use Ay to represent Ay =E [f(2)fT(Z)].

1) Abstractions; Informational Equivalence: Given two
random variables X and Y, following the convention of [6],
we call Y an abstraction of X if there exists a function
h: X — Y such that Y = h(X). If each of X,V is

lThroughout our development, we restrict to discrete random variables
on finite alphabets with positive probability masses, i.e., Pz (z) > 0 for all
z € Z.



an abstraction of the other, we say that X and Y are
informationally equivalenﬂ

By definition, the conditional expectation E [Y|X] is an
abstraction of X. Specifically, given f € FJ and s € J7,
fls(Z) is an abstraction of s(Z), where we have defined

fls(z) 2 E[f(2)|s(2) = s(2)], forall z € Z. (1)

2) Representation Learning Algorithms: We restrict to the
representation learning involving a pair of random variables
(X,Y) ~ Px y.We refer to each mapping of the form

(X.Y) > (f,9) @)

as a representation learning algorithm: it takes the random
variable pair (X,Y") as the input and outputs feature function
pair f € F¥ and g € Sryk for a give k > 1, which
map original data X,Y to the k-dimensional feature rep-
resentations f(X),g(Y) € R, respectively. Note that this
is a mathematical simplification of the practical learning
algorithms: we focus on the input-output relation, and omit
the implementation details such as the computation.

B. Canonical Dependence Kernel and Maximal Correlation

Given (X,Y) ~ Px y, we define the associated canonical
dependence kernel (CDK) function [8] as a joint function
iXi’y S ?xXg, with ( )

. s Pxy(z,y

We can apply the modal decomposition [3], a singular

value decomposition (SVD) in function space, to write the

CDK as a superposition of rank -one singular modes:

Zm ), “)

where we have the smgular values o1 > o9 > -0 >
ok > 0, and where K > 0 denotes the rank of ix.y.

*,

We also have the orthogonality relations of functions f;, g
E [fi*(X)f;(X)} =E [g;"(Y)g;‘(Y)] = 0,,, forall 4,5 €
(K.

1XY$Z/

The functions f, g/ correspond to the maximally cor-
related functions in Fy and Fy, known as Hirschfeld—
Gebelein—Rényi (HGR) maximal correlation functions [9],
[10], [11]. To see the connection, let us denote the covariance
of feFyx and g € Fy as

cov(f,g) 2 Epyy [f(X)g(Y)] = Epypy [f(X)g(Y)].
Then, for all ¢ = 1,..., K, we have o; = cov(f},g7) =
Eryy [ (X)g:(Y)] and (f7,g7) = argmax cov(fi, g:),

where the maximization is taken over allll'glfi € Fx and
g; € Fy such that E[f3(X)] = E[¢g?(Y)] = 1 and
E [fi(X)f;(X)] =E [gi(Y)g;‘(Y)} =0 for all 5 <.
For convenience, we also define
f*é(fik7"’7f}k()T’ g*é(g;‘"."g;()rr. (5)
C. Sufficient Statistics and Minimal Sufficiency

We start with the definition of sufficiency and minimal
sufficiency. For more detailed discussions, see, e.g., [12,
Section 2.9].

2The concept of informational equivalence was also introduced indepen-
dently in later psychological studies, e.g., [7].

3Though the k is required to make the mapping well-defined, we will
only specify the choice when necessary.

Definition 1. Given XY, f(X) is a sufficient statistic of X
for inferring Y if we have the Markov relation X — f(X) —
Y. We call f(X) a minimal sufficient statistic if f(X) is
sufficient, and for each given sufficient statistic T of X, f(X)
is an abstraction of T.

By definition, all minimal sufficient statistics are infor-
mationally equivalent. Therefore, it suffices to specify one
representative among the equivalent class, say, S = s(X)
from some s. Then, we can characterize the collection of all
sufficient statistics as { f(X): S is an abstraction of f(X)}.

We can also express the sufficiency in terms of CDK
functions. Specifically, let ix.y(X,Y") indicate the random
variable 7(X,Y) where v = ix,y. Then we have the
following property. The proof is omitted.

Property 1. f(X
ix.v(X,Y) is an abstraction of (f(X

) is a sufficient statistic if and only if
), Y).

By symmetry, g(Y') is sufficient if and only if ix.y (X,Y)
is an abstraction of (X, g(Y")). This motivates us to consider
a symmetric notion of sufficiency: we say that f(X) and
g(Y") are jointly sufficient if ix.y (X,Y") is an abstraction of
(f(X),g(Y)). In particular, we have the following charac-
terization. The proof is omitted.

Property 2. The following statements are equivalent:
o f(X) and g(Y) are jointly sufficient;
e Both f(X) and g(Y) are sufficient statistics;
o We have the Markov chain X — f(X) —g(Y) Y.

Remark 1. We can replace ix,y(X;Y) in these state-
ments by its informationally equivalent transformations. For
example, we can obtain the pointwise mutual information
1Og<1 +ix;y($, y)) - log PX -
mapping t — log(1 + t).

} (x,y) by considering the

Remark 2. We can have equivalent results expressed in
terms of information measures. Specifically, the abstrac-
tion relation and informational equivalence were originally
characterized by using conditional entropies [6], and the
sufficiency can be characterized as some mutual information
equalities [12, Section 2.9].

III. DEFINITION AND FUNDAMENTAL PROPERTIES

A. Dependence Preserving Transformations

We first formalize dependence preserving transformations
as follows.

Definition 2. Given (X,Y) ~ Px y, a dependence preserv-
ing transformation generates transformed variables (X,Y),
where X = (X, Z) and Y = n(Y, W) are characterized by

o transformed alphabets 56,9 of X and Y, respectively;

o random sources Z € Z, W € W satisfying the Markov
chain Z — X —Y — W, characterized by conditional
distributions Pz x, Py |y,

o deterministic mappings £: X X Z — X, n:YxW— 4
such that X and Y are abstractions of X, v, respec-



tively.E]

With a slight abuse of notation, we use {71! and 7
to denote the mappings that decgde X,Y from X, Y,
respectively. This gives X = £~ 1(X) and Y = 5~ 1(Y).

-1

Remark 3. A degenerated case of dependence preserving
transformations is the one-to-one deterministic mapping,
which can be obtained by setting both Z and W to constants.

To see why the dependence is preserved, note that we
can obtain X — X — Y — Y from the Markov relation
Z — X —Y — W, i.e., the transformations do not introduce
additional information. Moreover, there is no loss of infor-
mation: we have X — X —Y —Y as X and Y are uniquely
determined from X and Y, respectively. We can formalize
this dependence preserving property in terms of the CDK as
follows. The proof is omitted.

Proposition 1. Given (X,Y), let X € X,Y € Y be the vari-
ables obtained from dependence preserving transformations
&, n [cf. Definition . Then, for all (Z,4) € X x Y, we have
ity (@,9) =ixy (@), 17 ()

B. Invariance, Maximal Correlation & Minimal Sufficiency

We first introduce the following definition.

Definition 3. Given (X,Y), we say a mathematical object)
0(X,Y) defined on (X,Y) is dependence induced if it
is invariant to dependence preserving transformations, i.e.,
IP’{@(X, Y)= O(X,Y)} =1, for all (X,Y) obtained from
(X,Y) through dependence preserving transformations.

Therefore, being dependence induced implies the object
relies only on the dependence structure, regardless of the
irrelevant information introduced during dependence preserv-
ing transformations, such as the Z, W in Definition @

Theorem 1. Given (X,Y), (f*(X),¢*(Y)) is dependence
induced, and we can construct a dependence preserving
transformation to transform (f*(X),g*(Y)) into (X,Y),
where f*,g* are the maximal correlation functions [cf. (3)].

Proof. We first verify that (f*(X),¢*(Y)) is dependence
induced. To see this, we assume the X , Y are transformed
from X, Y, respectively, where X = ¢~ 1(X),Y = n~1(Y)
with probability one. Suppose ix.y has the modal decom-
position @]) Then, it follows from Proposition [T] that, for all

(%,9) € X x Y,
gy (£,9) = ixy (€ 1(@),n71(5))
) -gi(n

201 fz( (

1€[K]

=3 i (ff o€ (@) (g7 o (@),

1€[K]

@)

“This can be achieved when we have
P x (#[2)Pg x (2]2) = 0 for all & € X and @, 2" € X with @ # 2/,
YIY(ny) ‘Y(y|y y=0forall €Y and y,y/ €Y with y # ¢/

SThis includes scalars, matrices, functions, random variables, etc.

which is the modal decomposition of iX;Y' Therefore, the
maximal correlation functions for X, Y are f*o&~1, g*on~ 1.
This implies

P{(/ o™ )(X) = /(0]

=P{(gon V) =g (M)} = 1.
As a result, it holds with probability one that
(o™X (g on ™)) = (1 (X), 9" (V).

Let S = f*(X), T = g¢g*(Y), we then construct a
dependence preserving transformation that transforms (.S, T')
into ($,7") = (X,Y) as follows. Due to the Markov relation
X-—-S—-T-Y,wecanuse Z = X, W =Y as the
random sources [cf. Definition [2]], and set the mappings to
&:(s,2) = z and 7: (t,w) — w. It can be verified that
this transformation satisfies all conditions in Definition 2l and
preserves the dependence. O

Remark 4. Though the mapped results f*(X) and g*(Y)
are dependence induced, the feature mappings f*,g* need
to adapt to the dependence preserving transformations and
are not dependence induced.

We have the following corollary.

Corollary 1. A mathematical object 6(X,Y) defined on
(X,Y) is dependence induced if and only if 0(X,Y) =
0(f*(X),g"(Y)).

Proof. Suppose (X,Y) is obtained from (X,Y) by ap-
plying a dependence preserving transformation. To see the
sufficiency, note that from Theorem (I} (f*(X),¢*(Y)) is
dependence induced, and thus 0(X,Y) = 6(f*(X), g*(Y)).
The necessity follows from the fact that (X,Y") can be trans-
formed from (f*(X), ¢*(Y")) with a dependence preserving
transformation [cf. Theorem [IJ|. O

Example 1. the mutual information I1(X;Y)
(f*( );9*(Y)) and the matrix diag(oy,...,0x) =
E [f*(X)g*T(Y)] are dependence induced.

From the corollary, dependence induced mathemati-
cal objectives do not contain more information than
(f*(X),g*(Y)). In addition, since (f*(X),g*(Y)) is de-
pendence induced, we can characterize such objectives by
considering only the input (f*(X),¢*(Y)). This gives a
canonical form of  that is invariant to dependence preserving
transformations.

Theorem [T] and the corollary also suggest the fundamental
role of f*(X),¢*(Y) (and their informationally equivalent
transformations) in characterizing the X — Y dependence.
It can be proved that f*(X), ¢g*(Y) are sufficient statistics,
see, e.g., [8, Section 2]. We can also easily verify it with the
notion of joint sufficiency: from @), f*(X), g*(Y) are joint
sufficient, and are thus sufficient statistics [cf. Property [2]].
Moreover, we can demonstrate that they are indeed minimal
sufficient statistics.

Proposition 2. Given (X,Y), the maximal correlation func-
tions f*(X), g*(Y) [cf. Pl] are minimal sufficient statistics.



Proof. By symmetry, it suffices to establish the minimal
sufficiency of f*(X). As f*(X) is a sufficient statistic,
it remains only to prove the minimality. From the modal
decomposition (@), we have fi(z) = o; 'E[g} (V)| X = 7]
for all 4 € [K]. Therefore, for any given sufficient statistic
S = s(X), we have

(@) = TTE[g (V)X = 2] = SE[g"(V)IS = s(a)],
where ¥ = diag(oy, . ..,0k). To obtain the second equality,
we have used the fact that Py x—, is a function of s(x),
since s(X) is sufficient. Therefore, f*(X) is an abstraction
of any sufficient statistic S, which completes the proof. [

C. Dependence Induced Representations and Learning

We then consider the impacts of dependence preserving
transformations on representation learning. Specifically, we
focus on the learned representations that are dependence
induced, i.e., invariant to such transformations. Formally, Let
alg: (X,Y) — (f,g) be a representation learning algorithm
that learns k-dimensional feature functions f € F%, g € 9'15
from (X,Y) ~ Px,y. Suppose (X,Y) are obtained by
applying a dependence preserving transformation on (X,Y),
via X = &(X,2), Y = (Y, W), where Z, W, £, n satisfy the
conditions in Definition [2] Applying the same algorithm to
the transformed data gives feature functions

(f©,g'") = alg(X, V),
where we have denoted the learned feature functions by
f© e 3"512 and ¢ € FE, with X, Y denoting transformed
alphabets. Note that the transformations &, 7 are not sepa-
rately input to the algorithm.

From Definition [3] the learned representations are depen-
dence induced if

P{FO(X) = F(X), g (V) = g(1)} =1
for all possible generating processes of X, Y. We refer to
the algorithm alg as a dependence learning algorithm if it
learns dependence induced representations. Specifically, we
have the following characterization of dependence induced
representations and corresponding learning algorithms.

Theorem 2. The collection </ of dependence learning
algorithms is given by
o 2 {alg: alg(X,Y) = (o f* ¢ og"),
(¢, ¢) = alg(f*(X),g"(Y))},  (6)

where [*, g* are the maximal correlation functions [cf. (B)].

Proof. We first verify that each alg € & for & as de-
fined in (6) is a dependence learning algorithm. It suffices
to note that the representation pair learned from alg is
(o(f*(X)),v(g*(Y))). This is dependence induced since
both (f*(X),¢*(Y)) and the mapping pair (¢,) are de-
pendence induced [cf. Theorem [} Corollary [T] and (6)].

To see the reverse direction, suppose alg is a dependence
learning algorithm, and let (¢,v) = alg(f*(X),g*(Y)),
( 1, g) = alg(X,Y) denote the learned feature func-
tions. From Theorem we can obtain (X,Y) from
(f*(X),g*(Y)) by applying a dependence preserving trans-
formation. As the representations are invariant to this trans-
formation, we have ¢(f*(X)) = f(X) and ¥(g*(Y)) =

§(Y") with probability one. This gives f = ¢o f*,§ = Pog*,
which implies that alg € <7. O

From Theorem |2} each dependence learning algorithm is
uniquely specified by the function pair (¢, ). This gives
a canonical form of the algorithm since the mappings ¢,y
are dependence induced (cf. (6)). The composition structure
(¢po f*,1og*) allows separate learning implementations of
(¢,4) and (f*, g*), as we will detail in later discussions.

Moreover, all dependence induced representations are ab-
stractions of f*(X), ¢*(Y), which are minimal sufficient
statistics [cf. Proposition 2. As a result, the dependence
learning algorithms extract only dependence-related infor-
mation. From the definition of minimal sufficiency, we can
readily obtain the following corollary of Theorem [2] The
proof is omitted.

Corollary 2. Given (X,Y) and a dependence learning
algorithm alg € <f, suppose (f,g) = alg(X,Y) are the
output feature functions. Then,

o For any sufficient statistics S = s(X) and T = t(Y),
f(X), g(Y) are abstractions of S and T, respectively;

o If f(X) and g(Y') are jointly sufficient, then f(X) and
g(Y) are minimal sufficient statistics.

In particular, the second claim of Corollary [2] provides
a way to test the minimal sufficiency by constructing cor-
responding dependence learning algorithms. An example is
the following generalization of Proposition

Proposition 3. Given (X,Y) and a one-to-one mapping
7: [~1,00) — R, suppose f € F¥ and g € 3",;“ factorize
T(ix.y), ie, T(ix.y(z,y)) = fY(2)g(y) forall x € X,y €
Y, and rank(Ay) = rank(Ay) = k. Then, f(X) and g(Y)
are minimal sufficient statistics.

Proof. Given (X,Y), consider the representation learning al-
gorithm that outputs the solution to the optimization problem
minimize Ep, p, [‘T(iX;y(X, Y)) — fT(X)g(Y)|2} )

fEF L geF
It can be easily verified that the algorithm is a dependence
learning algorithm. The solution is any f,g that factorize
T(ix;y), i.e.,
FHX)g(Y) = (Toixy)(X,Y). ()
Since rank(Ay) = rank(Ay) = k, the choice of (f,g) is
unique up to some invertible linear transformation pairs.
In addition, (7) implies that f(X) and ¢(Y) are jointly
sufficient. Finally, the minimal sufficiency follows from
Corollary O

We conclude this section by considering two extreme
cases: independence and strict dependence, summarized as
the following corollary. The proof is omitted.

Corollary 3. Given (X,Y) and alg € o, let (f,g) =
alg(X,Y) be the learned feature functions. We have
1) if X andY are independent, i.e., Pxy = Px Py, then
f(X) and g(Y') are constants and are independent of
the marginal distributions Px and Py;



2) ifY is an abstraction of X, then f(X
tion of Y.

) is an abstrac-

Remark 5. From our developments, we can also obtain
results about information measures. For example, it follows
from Theorem 2| that the dependence induced representations
F(X). g(Y) sarisfy H(F(X)) < H(f*(X)) and H(g(Y)) <
H(g*(Y)), where H(-) denotes the entropy.

IV. D-LOSSES AND DEPENDENCE LEARNING

Our discussions in the previous section have characterized
the theoretical behaviors of dependence learning algorithms.
It is, however, difficult to directly apply these results to
practical deep representation learning, e.g., determining if
a representation learning algorithm is a dependence learning
algorithm or constructing dependence learning algorithms.
To address these problems, it is necessary also to consider
practical implementation and develop operable characteri-
zations. To this end, we consider representation learning
algorithms characterized by corresponding loss functions and
characterize sufficient conditions on losses for constructing
dependence learning algorithms. We investigate a family of
loss functions, termed D-losses, and demonstrate their deep
connections to learning practices.

A. D-Loss Family

Given (X,Y) ~ Pxy, let I' = T'(f,g; Px,y) denote
a functional defined on (f,g) € F% x 3".;‘3. We will omit
Pxy and write I'(f,g) if the choice of Pxy is clear
from the context. Specifically, when we evaluate I" on a
dataset {(z;,y:)}i_;, the Px y corresponds to the empirical
distribution Px y (z,y) £ %22_1 L{z—: y—y,}» Where 1,
denotes the 0-1 indicator function.

We define the D-losses as follows.

Definition 4 (D-loss). Given (X,Y) ~ Pxy, a functional
T defined on (f,g) € F x fﬂj' is a D-loss if
1) suppose po& € Fk and on e ﬁj, then we have
D(po& pon; Pxy)=T(¢%; Pexymy))i  (8)
2) for all s € I and t € Fyj that satisfy the Markov
relation X — s(X) —t(Y) =Y, we have
F(f‘sag‘t) < F(f7g)7 (9)
where f|s and g|; are as defined in ().

Specifically, we say a D-loss T' is regular, if in (9),
I(f.9) = D(fls. gle) < oo implies (f,9) = (fls. gls)-

We can obtain dependence learning algorithms from the
D-loss family, demonstrated as follows.

Theorem 3. Given (X,Y) ~ Pxy, suppose L defined
n (f,9) € F§ x F§ is a D-loss and vp(X,Y) =
M p gyt h L(f,g; Pxy) exists. Then,

1) vp(X,Y) is dependence induced;

2) there exist dependence induced mappings ¢,v, such
that (f,g9) = (¢ o f*,1 o g*) achieves the minimum
value vy, where f*,g* are as defined in ();

3) if L is regular, then the representation learning al-
gorithm ((X,Y) > arg min, , L(f,g; Px.y)) is a de-
pendence learning algorithm.

Proof. We begin with the first two claims. Let S =
fA(X), T = g*(Y), and we use S, T denote the corre-
sponding alphabets. Suppose ( f g) € Fy kox ?‘3 achieves
the minimum value vy (X,Y’), and let (¢, w) € FExFk be
the mappings such that f = qS o f*, glgx = = o g*. Then,
from the Markov relation X S—T—-Y and (9), we obtain
L(f,4; Pxy) > L(f ,0lg% Pxy)
= L(¢o f*,dog* Pxy) = L($,¥; Ps,r),
where the last equality follows from (8). Note that since
( . J) achieves the minimum value of L, the inequality must
hold with equality, so the minimum value v, can be achieved

by (f,9) = (aéoj*,ﬁ o g*). In addition, we have
(¢,¢) € argmin L(¢,v; Psr), (10)
GEF L peFk
since otherwise we get an L value smaller than

L(f,§; Px.y). From Corollary both vy and (¢,7))
and dependence induced. Finally, when L is regular, the
equality L(f,§) = L(fls.gly-) implies (f,9) = (4o
f*,1 o g*). Therefore, it follows from (I0) and Theorem
that ((X,Y) — argmin; , L(f,g; Px,y)) is a dependence
learning algorithm. O

Combining Theorem [3]and Theorem 2] if L is a regular D-
loss, it suffices to solve minimize, , L(¢,1); Ps ) instead
of the original problem minimize; , L(f,g; Px,y), where
we have defined S = f*(X),T = ¢*(Y). In particular,
the optimal solution takes a composition form (f,g) =
(¢ o f*, 1 0g*), where only ¢, depend on the form of L.
This separation between loss-dependent functions (¢, ¢) and
loss-invariant (f*, g*) makes it possible to design efficient
implementation for D-loss minimization problems, which we
will detail in the next section.

Comparing the first claim with the second claim, a differ-
ence between D-losses and regular D-losses is that minimiz-
ing D-losses can give solutions not in the form (¢o f*, 1og™*).
However, from the first claim, restricting to such forms does
not affect the optimality. Therefore, it is without loss of
generality to restrict to such forms. Once we have this restric-
tion, the D-loss minimization algorithm is also a dependence
learning algorithm. Moreover, we can always convert a D-
loss into a regular D-loss by introducing regularization terms.
One example is demonstrated as follows. We omit its proof.

Property 3. If ' is a D-loss, then for all A\ > 0,u > 0,
(T 9) + X -E[IFCOI] + - E[lg)I?]) is a regu-

lar D-loss.

We can interpret the regularization terms in Property [3| as
a weight decay [13] on feature representations, which can be
implicitly introduced in optimization, e.g., stochastic gradient
descent. Due to these connections, we will consider general
D-losses in the discussions that follow, and restrict to the
optimal solutions of the form (¢po f*, 1pog*). Specifically, we
introduce several useful properties for constructing D-losses.
The proofs can be obtained by applying Jensen’s inequality
and noting the Markov relation X — S -7 —Y.

Property 4. Suppose v: R¥ xRF — R is convex with respect
to both arguments, then (f,g) — Ep, . [7(f(X),g(Y))]



and (f,g) = Epypy [7(f(X),g(Y))] are D-losses.

Property 5. Suppose I is a D-loss on (f, g) € FExF§, and
v: RxRFxRF xREXF 5 R is nondecreasing with respect to
the first argument, then v (L'(f, ¢),E[f(X)],E[g(Y)],Ayq)
is also a D-loss, where Ay gy =E [f(X)gT(Y)].

Given [ losses, we can obtain a new loss by using a
mapping R! — R that aggregates the losses. We refer to
the operation as a monotonic aggregation if the mapping is
nondecreasing with respect to each argument.

Property 6. A monotonic aggregation of D-losses is a D-
loss.

B. D-losses in Learning Practices

We demonstrate the connection between D-losses and
learning practices, including loss functions and learning
techniques such as regularization. For convenience, we adopt
extended-value extension [cf. [14, Section 3.1.2]], which
allows the value of I" to be infinity. In particular, we define
the characteristic function (0-infinity indicator function) of a
set D C R™, such that for all v € R™,

A 07 v € @
Ip(v) = o gD’ (11)

1) Log Loss (Softmax & Cross Entropy): We demonstrate
the log loss minimization problem is equivalent to a D-
loss minimization problem. Our development will use the
following fact.

Fact 1. The functional Ep, [logEp, [exp(fT(X)g(Y))]]
defined on (f,g) € 3"% X "J'Z;“ is a D-loss, where the inner
expectation is taken w.r.t. Y ~ Py, and the outer expectation
is taken w.rt. X ~ Px.

In particular, let X and Y denote the data variable and
categorical label, respectively. We use h(z) € R to denote
the feature representation, which corresponds to the feature
in the last hidden layer, and denote the weight and bias term
corresponding to Y = y as w(y) € R? and b(y) € R,
respectively. By applying the softmax function, we get a
posterior parameterized by h, w, b:

exp(h™ (2)w(y) + b(y))

P (y|z) = . (12)
Yix Y yrey exp(hT(@)w(y’) +b(y"))
Then, the log loss is given by the expected value

5(h,w,b) . 5(haw,b) (r
of —log P e B gy opy |~ log PUR Y (V1X)]
Let Kk = d + 1, and we define the calibrated bias term

B(y) = b(y) — log Py (y), and features

1 k 5 K
Then, we can rewrite the log loss as —E [fT(X)g(Y)] +
Epy [logEp, [exp(fT(X)g(Y))]] + H(Y), where H(Y)
denotes the entropy of Py. Therefore, minimizing log loss

is equivalent to the minimization of the following functional
defined on (f, g) € F& x ffé“:
~E[fT(X)g(Y)] +Epy [logEp, [exp(fT(X)g(V))]]
+E [Ty (A(X))] (14)
where f; denotes the first dimension of f, and where 1
is the characteristic function as defined in (II). Note that

E [H{l}(fl(X))] < oo if and only if P{f1(X) =1} = 1,
which guarantees that the optimal f takes the form of (T3).

From Fact [T] and Property [ Property [5] Property [6] the
extended log loss (T4) is a D-loss. Therefore, for a properly
regularized log loss (e.g., Property [3), the optimal h(X)
and w(Y') are dependence induced. It is worth mentioning
that though b(Y") is not dependence induced in general, the
calibrated bias 5(Y") is dependence induced.

2) Support Vector Machine [15]: We then consider the
loss applied in support vector machine (SVM). In particular,
we consider a binary classification problem on data X, where
the label Y € Y = {—1,1} is balanced. Suppose our goal
is to find the optimal feature h(x) € R, weight w € RY,
and bias b € R. The SVM loss for the separating hyperplane
(w, h(z)) + b = 0 can be written as [13]

Epyy ninge(Y, (w, h(X)) +B)] + A~ ]2, (15)
where fhinge: Y X R — R denotes the hinge loss, defined as
Chinge(y,2) = (1 — y2)* with 7 £ max{0,z}, and where
A > 0 is a hyperparameter. Let kK = d + 1 and define feature
functions f € F%,g € "J'If as

fla) = ") v

Then, we have lhinge (Y, (w, h(X))+b) = (1—(wY, h(X))—

bY)* = (1= (f(X),g(Y)))* and |lw|]* = E [|lga (V)]
where we have defined gjq = (g1,...,94)" and thus
9a(Y) =Y - w.

Therefore, the minimization of (I3) is equivalent to min-
imizing the functional

E[(1= (£(X),9¥)) "] +A-E [llga ()]

+E L1y (f(X))] + Iy (E[g(V)), (A7)
where fr(X) denotes the k-th dimension of f. To see
this, note that E [I;1;(fx(X))] < oo if and only if
P{fr(X) =1} =1, and I} (E [g(Y)]) < oc if and only if
Eg(Y)] =0, ie., g(—1) = —g(1). As a result, the optimal
solution (f, g) that minimizes must take the form (T6).
Note that from Property [ the first three terms of are
D-losses. Then, by combining Property [5| and Property [6] we
can verify is a D-loss.

3) Variational Forms of p-Divergences: From Property
(_EPX,Y [fT(X)g(Y)} +Epypy [u(fT(X)g(Y))]) is a
D-loss for all convex function u: R — R. Such functionals
appear in characterizing variational forms of (-divergences
[16], where u = (* is the convex conjugate of some convex
function ¢: [0,00) — R with ¢(1) = 0.

4) Learning Techniques: Regularization, Constrained
Features, and Feature Nesting: We consider several learning
techniques that preserve the D-loss structure. We first con-
sider the regularization. Given a D-loss L(f, g), we can con-
struct the regularized loss L(f, g)+A-R(f, g), where R(f, g)
is the regularization term and A > 0 is the hyperparameter.
Then, from Property [6] the regularized loss is a D-loss if
R(f,g) is a D-loss. From Property E], the squared distance

E[|[/(X) = g(Y)|*], and generally E [ f(X)—g(¥)],]

for p > 1 are D-losses, where ||u]l, = (32, vF)? denotes

the p-norm. Similarly, E [|| f(X)],], E[llg(Y)]p]. p > 1 and
E [[|£(X)]I?]. E [[lg(Y)]|?] are also D-losses. During imple-




mentation, the expectation is estimated by the corresponding
empirical averages over each mini-batch.

In contrast to the batch-wise regularization terms, another
common practice is directly introducing constraints on each
instance of feature representations, e.g., force features to be
nonnegative. With the characteristic function (TI), we can
use an extended loss to characterize such constraints. For
example, suppose the original loss L(f,g) is a D-loss and
f(X) is constrained to be within a set € C R¥. Then we can
consider the extended loss L(f,g) + E [Le(f(X))], which
leads to the same optimal solution. From Property [} the
extended loss is a D-loss if € is convex. Two important
examples of such convex sets are: 1) p-norm balls, e.g.,
¢ = {v € R¥: |ju]l, < 1}, where each feature instance
is projected onto the norm ball; 2) nonnegative orthant,
ie, € = {v € RF: v; > 0}, corresponding to learning
nonnegative features.

The regularization methods are also used to combine mul-
tiple training objectives by optimizing their weighted sum.
From Property [f] if each objective is a D-loss, the weighted
sum will also be a D-loss. A special example is Feature
Nesting, which constructs the weighted sum of the same loss
applied on a set of nested features. Specifically, suppose the
loss L is defined for all d-dimensional feature function pair
(f.9), e.g. E[fT(X)g(Y)]. Then, give (f,g) € T x T,
we consider the nesteg loss

i=1

where ¢;,1 =1,... ,lk: are non-negative weights, and where
for each i € [k], we have defined fi;; € I, g € Fy as

fa &2 D g E ()" (19)
Such construction is applied to induce structures on the
representations f, g, referred to as the nesting technique [3,
Section 4], also called matryoshka representation learning
[17]. The nested loss is a D-loss if L is a D-loss.

(18)

C. Representations Induced by Strict Dependence

We conclude this section by discussing a special case
where X and Y are strictly dependent, and we have the
following characterization [cf. Corollary [3]].

Proposition 4. Given a regular D-loss L(f, g; Px y) defined
for f € S"DIZ, g€ S'“,Z’j, let us define the representation learning
algorithm alg: (X,Y') — argming , L(f, g; Px v ). Suppose
Y = y(X) for a mapping y: X — Y. Then, we have
alg(X,Y) ={(¢oy,v): (¢,) € alg(Y,Y)}.

Note that a specific case of Proposition [] is the classifi-
cation scenario, where Y corresponds to the label of data
X. The mapping y corresponds to the labeling function, and
Y = y(X) indicates that we can obtain such a label from
data without any ambiguities. This happens when Px y is the
empirical distribution of a classification dataset {(x;, y;)}7"
with distinct X samples, i.e., x; # x; for all 7 # j. For such
datasets, from (20), the optimal feature function f satisfies
f(z) = ¢(y(x)), ie., all X samples with the same label
y(X) share the same representation.

(20)

This phenomenon has been observed in training classifica-
tion deep neural networks with cross entropy [5], referred to
as the “neural collapse’ﬂ where theoretical characterizations
were discussed therein and also in subsequent works [18],
[19]. Our development demonstrates that this phenomenon is
essentially a consequence of the special dependence structure
of training data and is shared by a large collection of losses.

V. LEARNING WITH FEATURE ADAPTERS

The composition structure of dependence induced repre-
sentations provides a structured implementation of depen-
dence learning algorithms, where we use S = f*(X),T =
¢g*(Y) as an intermediate interface for feature represen-
tations. As shown in Fig. [, when S,T are given, the
minimization of D-loss L(f,g; Pxy) can be solved by
minimizing L(¢, ; Psr) over (¢,v), and we can retrieve
the optimal representations via f(X) = ¢(5),g(Y) = (T)
[cf. Theorem [3]. We call such ¢, as feature adapters.
Therefore, we can obtain solutions to different D-losses by
training only the feature adapters ¢,, without changing
f*,g". The maximal correlation functions f*,g* can be
learned separately, e.g., as pre-trained deep neural networks,
where the training details will be discussed later.

o Iy s Py s
L(¢,1))
v
/ T / g(Y)

Fig. 1. Feature learning by training adapters ¢, 1. The feature extractors
f*, g* can be frozen pre-trained networks or non-trainable modules.

The separation enables more efficient implementation of
the learning procedures. In particular, when S, T" have much
simpler structures compared with original X, Y, we can use
lightweight neural networks as the adapters ¢, ), and the
adapter training does not require back-propagating learning
errors [20] to the f*, g* modules.

Note that the representation interface S, T are both infor-
mationally and computationally efficient: from the minimal
sufficiency, S, T" contain necessary information without intro-
ducing redundancies; even without adaptations, we can use
f*,g* to conduct inference tasks by some linear assembling
processes, as discussed in [3].

A. Feature Adapters for Dependence Learning

The feature adapters allow us to adapt to different D-
losses by training only the adapters. In particular, we can use
feature adapters to implement constrained feature learning
and inference-time hyperparameter tuning.

6The Neural Collapse (NC) [5] was defined as the collection of four
interconnected phenomena, NC1-NC4, where NCI1 corresponds to the
phenomenon of f(X) being an abstraction of Y, also referred to as the
“variability collapse.”



1) Constrained Feature Learning With Adapters: When
the training loss is a D-loss, we can implement constrained
feature learning with the architectures shown in Fig. [I}
Specifically, from our discussions in Section [V-B.4] we can
effectively train the adapters ¢, 1) to learn features restricted
to p-norm balls or non-negative features f, g.

2) Inference-time Hyperparameter Tuning: Suppose we
have a class of D-losses Ly (f,g; Px,y), where A € J is the
hyperparameter, e.g., the weights for regularization terms.
The optimal feature functions that minimizes L) depend on
A, which we denote by (f*), g)). The values of \ are often
determined by comparing performances of different A\, which
requires learning (f(N), g(N)) for a set of different values.

\| \| o
Xo f* oW
—
A L(¢, )

Fig. 2. The feature adapters ¢(*), () are parameterized by the hyper-
parameter A, which is tunable during inference.

From Theorem we have (fV, gy = (Mo f* pM o
g*). Note that only the adapters (¢(*),1/)(N)) depend on the
), and can be learned by minimizing Ly (¢, Ps 7).
Therefore, it suffices to learn feature adapters parameterized
by A. Specifically, we define the loss L(¢,; Psr) =
Exwp, [LA(¢™,p™; Pg 1), where Py is a distribution
supported on J. Then, minimizing L(¢,%; Psr) leads to
parameterized ¢, ("), which give parameterized repre-
sentations fM)(X), M (Y), as shown in Fig.

In contrast to the common practice, this design allows
us to tune the hyperparameter A over a continuous range,
without retraining or requiring validation samples. This can
be useful in learning scenarios where we have many different
downstream tasks but few validation samples.

B. Learning Maximal Correlation Functions

The maximal correlation functions can be effectively
learned from data via maximizing the nested H-score [3].
Specifically, for f € F%, g € F§, we define the nested H-
score Hest(f, 9) aﬂ

k
%pnest(.ﬂ g) £ Z%(fmvg[z])v

i=1
where f[;], g;) are as defined in (I9), and where JZ(f, g) is
the H-score, defined as

H($,9) 2E [fT(X)g(V)] — E[F(X)) E[g(V)
5 trAA,), 22)

where Ay =E [f(X)fT(X)], Ay =E [g(Y)g"(Y)]. It can
be verified that — s (f, g) is a regular D-loss.

2L

"The form of the nested H-score is nonunique; for example, the weights
before each H-score can be arbitrary positive numbers. See [3, Section 4.1]
for detailed discussions.

Note that since f*(X), g*(Y") are minimal sufficient statis-
tics, it is possible to learn f*(X), ¢g*(Y) by adapting exist-
ing sufficient statistics, which can significantly reduce the
computation costs. Such sufficient statistics can be obtained
from pretrained models, e.g., deep classifiers. In engineering
applications, we can also obtain analytical forms of sufficient
statistics from corresponding physical system models.
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