SEQUENTIAL DEPENDENCE DECOMPOSITION & FEATURE LEARNING

Xiangxiang XuJoint work with Prof. Lizhong Zheng

Allerton Conference 2023

SEQUENCES

- ► Videos
- ▶ exampe of dependnce in plai tetx

Guessing Next Letter

solve

Guessing Next Letter

► count the transition: **DEPENDENCE**

▷ "E" followed by N: 0.5, P: 0.25, 'SPC': 0.25

Guessing Next Letter

- solve

- solve

▷ "E" followed by N: 0.5, P: 0.25, 'SPC': 0.25

predict based on the last letter and digram frequency

Guessing Next Letter

- solve

- solve

▷ "E" followed by N: 0.5, P: 0.25, 'SPC': 0.25

predict based on the last letter and digram frequency

generate a Markov chain of letters

Guessing Next Letter

- solve

- solve

- ► count the transition: **DEPENDENCE**

 - ▷ "E" followed by N: 0.5, P: 0.25, 'SPC': 0.25

- generate a Markov chain of letters
 - ▶ word-level construction
 - b trigram, n-gram (higher order Markov chains)

Guessing Next Letter

Second-order approximation (digram structure as in English).
ON IE ANTSOUTINYS ARE T INCTORE ST BE S DEAMY
ACHIN D ILONASIVE TUCOOWE AT TEASONARE FUSO
TIZIN ANDY TOBE SEACE CTISBE

Third-order approximation (trigram structure as in English).
IN NO IST LAT WHEY CRATICT FROURE BIRS GROCID PONDENOME OF DEMONSTURES OF THE REPTAGIN IS REGOACTIONA OF CRE

Guessing Next Letter

Second-order approximation (digram structure as in English).
ON IE ANTSOUTINYS ARE T INCTORE ST BE S DEAMY
ACHIN D ILONASIVE TUCOOWE AT TEASONARE FUSO
TIZIN ANDY TOBE SEACE CTISBE

Third-order approximation (trigram structure as in English).
IN NO IST LAT WHEY CRATICT FROURE BIRS GROCID PONDENOME OF DEMONSTURES OF THE REPTAGIN IS REGOACTIONA OF CRE

Operations

frequency tables

264		SECRET	AN	D URGEN	Г		
		Т	ABL	EXII			
		Eng	LISH	Trigrams			
Figures repr portant in the	resent ir rela	approximate fre	equen	ncies for 20,000	words,	but are more	im-
A		agn	2	ame	53	aro	7
Aam	1	ago	6	amh	1	arp	
		agr	8	ami	6	arr	
Aba	-6-	agu	2	aml	1	ars	
abd	1	Ale	2	amn	1 8	art	
abe	1	Aheaho	1	amo	10	arv	3
abi	3	ahu	1	amp	6	ary	34
abl	39	ahv	1	amy	1		
abo	28	any		amy		Asa	(1
abr	1	Aid	24	Ana	6	asc	3
abs	1	aig	3	anc	39	ase	20

Fletcher Pratt. Secret and Urgent. 1939.

Claude E Shannon. A Mathematical Theory of Communication. 1948.

Guessing Next Letter

Second-order approximation (digram structure as in English).
ON IE ANTSOUTINYS ARE T INCTORE ST BE S DEAMY
ACHIN D ILONASIVE TUCOOWE AT TEASONARE FUSO
TIZIN ANDY TOBE SEACE CTISBE

Third-order approximation (trigram structure as in English).
IN NO IST LAT WHEY CRATICT FROURE BIRS GROCID PONDENOME OF DEMONSTURES OF THE REPTAGIN IS REGOACTIONA OF CRE

Operations

- frequency tables
- opens a book... select a letter at random

264		SECRET	AN	D URGEN	Γ		
		Г	ABL	EXII			
		Eng	LISH	Trigrams			
Figures repr portant in thei	esent r rela	approximate fr	equen her.	cies for 20,000	words,	but are more	im-
A		agn	2	ame	53	aro	7
Aam	1	ago	6	amh	1	arp	1
		agr	8	ami	6	arr	19
Aba	-6-	agu	2	aml	1	ars	46
abd	1			amn	1	art	48
abe	1	Ahe	2	amo	8	arv	3
abi	3	aho	1	amp	10	ary	34
abl	39	ahu	1	ams	6		
abo	28	aby	1	amy	1	Asa	G
abr	1	Aid	24	Ana	6	asc	3
abs						ase	20

Fletcher Pratt. Secret and Urgent. 1939.

Claude E Shannon. A Mathematical Theory of Communication. 1948.

- ▶ *n*-gram table on $\mathfrak{X} \implies |\mathfrak{X}|^n$ entries
- ► "book": may not contain all combinations

- ▶ n-gram table on $\mathfrak{X} \implies |\mathfrak{X}|^n$ entries
- ► "book": may not contain all combinations

Deep Learning Solution

entries are structured

- ▶ *n*-gram table on $\mathfrak{X} \implies |\mathfrak{X}|^n$ entries
- ▶ "book": may not contain all combinations

Deep Learning Solution

- entries are structured
- ► have "table" parameterized
 - deep neural nets: LSTM, Transformer
- ▶ learn parameters from "books"

- ▶ *n*-gram table on $\mathfrak{X} \implies |\mathfrak{X}|^n$ entries
- ▶ "book": may not contain all combinations

Deep Learning Solution

- entries are structured
- ▶ have "table" parameterized
 - ▷ deep neural nets: LSTM, Transformer
- ► learn parameters from "books"

Hidden Parts?

- black-box features
- dependence structure, e.g., the "order"

 $(X,Y) \sim P_{X,Y}$ variables of interest, e.g., input and output pair Feature Space

▶ Features of X: $\mathcal{F}_{\mathcal{X}} \triangleq \{\mathcal{X} \rightarrow \mathbb{R}\}$

 $(X,Y) \sim P_{X,Y}$ variables of interest, e.g., input and output pair

Feature Space

- ▶ Features of X: $\mathcal{F}_{\mathcal{X}} \triangleq \{\mathcal{X} \rightarrow \mathbb{R}\}$
- ▶ Inner Product $\langle f_1, f_2 \rangle \triangleq \mathbb{E}_{P_X} [f_1(X)f_2(X)]$

 $(X,Y) \sim P_{X,Y}$ variables of interest, e.g., input and output pair Feature Space

- ▶ Features of X: $\mathcal{F}_{\mathcal{X}} \triangleq \{\mathcal{X} \rightarrow \mathbb{R}\}$
- ► Inner Product $\langle f_1, f_2 \rangle \triangleq \mathbb{E}_{P_X} [f_1(X)f_2(X)]$
 - ▶ Induced geometry: norm, orthogonality, projection, etc.

 $(X,Y) \sim P_{X,Y}$ variables of interest, e.g., input and output pair Feature Space

- ▶ Features of X: $\mathcal{F}_{\mathcal{X}} \triangleq \{\mathcal{X} \rightarrow \mathbb{R}\}$
- ▶ Inner Product $\langle f_1, f_2 \rangle \triangleq \mathbb{E}_{P_X} [f_1(X)f_2(X)]$
 - ▶ Induced geometry: norm, orthogonality, projection, etc.
 - P_X: Metric (distribution)

 $(X,Y) \sim P_{X,Y}$ variables of interest, e.g., input and output pair Feature Space

- ▶ Features of X: $\mathcal{F}_{\mathcal{X}} \triangleq \{\mathcal{X} \rightarrow \mathbb{R}\}$
- ► Inner Product $\langle f_1, f_2 \rangle \triangleq \mathbb{E}_{P_X} [f_1(X)f_2(X)]$
 - ▶ Induced geometry: norm, orthogonality, projection, etc.
 - ▷ P_X: Metric (distribution)
- ▶ Inner product spaces $\mathcal{F}_{\chi}[P_X], \mathcal{F}_{y}[P_Y]$

 $(X,Y) \sim P_{X,Y}$ variables of interest, e.g., input and output pair

Feature Space

- ▶ Features of X: $\mathcal{F}_{\mathcal{X}} \triangleq \{\mathcal{X} \rightarrow \mathbb{R}\}$
- ▶ Inner Product $\langle f_1, f_2 \rangle \triangleq \mathbb{E}_{P_X} [f_1(X)f_2(X)]$
 - ▶ Induced geometry: norm, orthogonality, projection, etc.
 - ▷ P_X: Metric (distribution)
- ▶ Inner product spaces $\mathcal{F}_{\mathcal{X}}[P_X], \mathcal{F}_{\mathcal{Y}}[P_Y]$

Joint functions $\mathcal{F}_{\chi \times y}[P_X P_Y]$

ightharpoonup Metric $P_X P_Y$ helps decouple the dependence

 $(X,Y) \sim P_{X,Y}$ variables of interest, e.g., input and output pair

Feature Space

- ▶ Features of X: $\mathcal{F}_{\mathcal{X}} \triangleq \{\mathcal{X} \rightarrow \mathbb{R}\}$
- ▶ Inner Product $\langle f_1, f_2 \rangle \triangleq \mathbb{E}_{P_X} [f_1(X)f_2(X)]$
 - ▶ Induced geometry: norm, orthogonality, projection, etc.
 - ▷ *P_X*: Metric (distribution)
- ► Inner product spaces $\mathcal{F}_{\mathcal{X}}[P_X], \mathcal{F}_{\mathcal{Y}}[P_Y]$

Joint functions $\mathcal{F}_{\chi \times y}[P_{\chi}P_{\gamma}]$

- ightharpoonup Metric $P_X P_Y$ helps decouple the dependence
- ▶ Product of $f \in \mathcal{F}_{\mathcal{X}}, g \in \mathcal{F}_{\mathcal{Y}}$: $f \otimes g : (x,y) \mapsto f(x)g(y)$

 $(X,Y) \sim P_{X,Y}$ variables of interest, e.g., input and output pair

Feature Space

- ▶ Features of X: $\mathcal{F}_{\mathcal{X}} \triangleq \{\mathcal{X} \rightarrow \mathbb{R}\}$
- ▶ Inner Product $\langle f_1, f_2 \rangle \triangleq \mathbb{E}_{P_X} [f_1(X)f_2(X)]$
 - ▶ Induced geometry: norm, orthogonality, projection, etc.
 - ▷ P_X: Metric (distribution)
- ▶ Inner product spaces $\mathcal{F}_{\mathfrak{X}}[P_X], \mathcal{F}_{\mathfrak{Y}}[P_Y]$

Joint functions $\mathcal{F}_{\chi \times y}[P_X P_Y]$

- ightharpoonup Metric $P_X P_Y$ helps decouple the dependence
- ▶ Product of $f \in \mathcal{F}_{\mathcal{X}}, g \in \mathcal{F}_{\mathcal{Y}}$: $f \otimes g : (x, y) \mapsto f(x)g(y)$
- ► $f \otimes g \triangleq \sum_{i=1}^{R} f_i \otimes g_i$ for k-dim features

$$f = (f_1, \ldots, f_k)$$

$$g = (g_1, \ldots, g_k)$$

Canonical Dependence Kernel (CDK)

$$\mathfrak{i}_{X;Y} = \frac{P_{X,Y}}{P_X P_Y} - 1$$

Canonical Dependence Kernel (CDK)

$$\mathfrak{i}_{X;Y} = \frac{P_{X,Y}}{P_X P_Y} - 1$$

$$\begin{array}{l} \triangleright \ \mathfrak{i}_{X;Y} \in \mathfrak{F}_{\mathfrak{X} \times \mathfrak{Y}} \\ \triangleright \ \|\mathfrak{i}_{X;Y}\| = 0 \ \text{iff} \ X \perp\!\!\!\!\perp Y \end{array}$$

Canonical Dependence Kernel (CDK)

$$\mathfrak{i}_{X;Y} = \frac{P_{X,Y}}{P_X P_Y} - 1$$

$$\, \triangleright \, \, \mathfrak{i}_{X;Y} \in \mathfrak{F}_{\mathfrak{X} \times \mathcal{Y}}$$

$$||\mathbf{i}_{X:Y}|| = 0 \text{ iff } X \perp Y$$

Learning CDK from Features

$$\mathscr{H}(f,g) \triangleq \frac{1}{2} \left(\|\mathbf{i}_{X;Y}\|^2 - \|\mathbf{i}_{X;Y} - f \otimes g\|^2 \right)$$

Canonical Dependence Kernel (CDK)

$$\mathbf{i}_{X;Y} = \frac{P_{X,Y}}{P_X P_Y} - 1$$

$$\stackrel{\triangleright}{\mathsf{i}}_{X;Y} \in \mathfrak{F}_{X \times Y}$$

$$\stackrel{\triangleright}{\mathsf{i}}_{[\mathbf{i}_{X;Y}]} = 0 \text{ iff } X \perp Y$$

Learning CDK from Features

$$\mathscr{H}(f,g) \triangleq \frac{1}{2} \left(\|\mathbf{i}_{X;Y}\|^2 - \|\mathbf{i}_{X;Y} - f \otimes g\|^2 \right)$$

• learning $i_{X;Y}$ by maximizing the H-score

Canonical Dependence Kernel (CDK)

$$\mathbf{i}_{X;Y} = \frac{P_{X,Y}}{P_X P_Y} - 1$$

$$\stackrel{\triangleright}{||\mathbf{i}_{X;Y} \in \mathcal{F}_{X \times \mathcal{Y}}}{||\mathbf{i}_{X;Y}|| = 0 \text{ iff } X \perp \!\!\! \perp Y}$$

Learning CDK from Features

$$\mathscr{H}(f,g) \triangleq \frac{1}{2} \left(\|\mathbf{i}_{X;Y}\|^2 - \|\mathbf{i}_{X;Y} - f \otimes g\|^2 \right)$$

- learning $i_{X:Y}$ by maximizing the H-score
- efficiently computable from data samples $\{(x_i, y_i)\}_{i=1}^n$

$$\mathscr{H} \stackrel{k=1}{=} \operatorname{cov}(f(X), g(Y)) - \frac{1}{2} \cdot \mathbb{E}[f^2(X)] \cdot \mathbb{E}[g^2(Y)]$$

Canonical Dependence Kernel (CDK)

$$\mathbf{i}_{X;Y} = \frac{P_{X,Y}}{P_X P_Y} - 1$$

$$\stackrel{\triangleright}{||\mathbf{i}_{X;Y} \in \mathcal{F}_{X \times \mathcal{Y}}}{||\mathbf{i}_{X;Y}|| = 0 \text{ iff } X \perp \!\!\! \perp Y}$$

Learning CDK from Features

$$\mathscr{H}(f,g) \triangleq \frac{1}{2} \left(\|\mathbf{i}_{X;Y}\|^2 - \|\mathbf{i}_{X;Y} - f \otimes g\|^2 \right)$$

- learning $i_{X;Y}$ by maximizing the H-score
- efficiently computable from data samples $\{(x_i, y_i)\}_{i=1}^n$

$$\mathscr{H} \stackrel{k=1}{=} \underbrace{\operatorname{cov}(f(X), g(Y))}_{\frac{1}{n} \sum_{i} f(x_{i}) g(x_{i})} - \frac{1}{2} \cdot \underbrace{\mathbb{E}[f^{2}(X)]}_{\frac{1}{n} \sum_{i} f^{2}(x_{i})} \cdot \mathbb{E}[g^{2}(Y)]$$

Canonical Dependence Kernel (CDK)

$$i_{X;Y} = \frac{P_{X,Y}}{P_X P_Y} - 1$$

$$i_{X;Y} \in \mathcal{F}_{X \times Y}$$

$$\triangleright \ \mathbf{i}_{X;Y} \in \mathcal{F}_{X \times Y}
\triangleright \ \|\mathbf{i}_{X;Y}\| = 0 \text{ iff } X \perp Y$$

Learning CDK from Features

$$\mathscr{H}(f,g) \triangleq \frac{1}{2} \left(\|\mathbf{i}_{X;Y}\|^2 - \|\mathbf{i}_{X;Y} - f \otimes g\|^2 \right)$$

▶ apply neural feature extractors to process data

Canonical Dependence Kernel (CDK)

$$\mathbf{i}_{X;Y} = \frac{P_{X,Y}}{P_X P_Y} - 1$$

$$\stackrel{\triangleright}{||\mathbf{i}_{X;Y} \in \mathcal{F}_{X \times Y}}{||\mathbf{i}_{X;Y}|| = 0 \text{ iff } X \perp \!\!\! \perp Y}$$

Learning CDK from Features

$$\mathscr{H}(f,g) \triangleq \frac{1}{2} \left(\|\mathbf{i}_{X;Y}\|^2 - \|\mathbf{i}_{X;Y} - f \otimes g\|^2 \right)$$

apply neural feature extractors to process data

▶ maximize $\mathscr{H}(f,g)$ \Longrightarrow $f \otimes g = \mathfrak{i}_{X;Y}$

Canonical Dependence Kernel (CDK)

$$\mathfrak{i}_{X;Y} = \frac{P_{X,Y}}{P_X P_Y} - 1$$

$$\triangleright \ \mathfrak{i}_{X;Y} \in \mathfrak{F}_{\mathfrak{X} \times \mathfrak{Y}}$$

$$\triangleright \|\mathbf{i}_{X;Y}\| = 0 \text{ iff } X \perp \!\!\!\perp Y$$

Learning CDK from Features

$$\mathscr{H}(f,g) \triangleq \frac{1}{2} \left(\|\mathbf{i}_{X;Y}\|^2 - \|\mathbf{i}_{X;Y} - f \otimes g\|^2 \right)$$

apply neural feature extractors to process data

- ▶ maximize $\mathscr{H}(f,g)$ \Longrightarrow $f \otimes g = \mathfrak{i}_{X;Y}$
 - \triangleright compute $\|i_{X:Y}\|$ from features
 - prediction/estimation

$$P_{X|Y}(x|y) = P_X(x) \cdot [1 + f(x) \cdot g(y)]$$

Learn X based on

Learn X based on

Y: i_{X;Y}

 $ightharpoonup (Y, Z): i_{X;Y,Z}$

Space $\mathcal{F}_{X \times Y \times Z}[P_X P_{Y,Z}]$

Learn X based on

Space
$$\mathcal{F}_{X \times Y \times Z}[P_X P_{Y,Z}]$$

► (Y, Z): i_{X;Y,Z}

Contribution of Z

$$\mathbf{i}_{X;Y,Z} - \mathbf{i}_{X;Y}$$

Learn X based on

Y: i_{X;Y}

► (Y, Z): $i_{X;Y,Z}$

Space $\mathcal{F}_{\chi \times \mathcal{Y} \times \mathcal{Z}}[P_X P_{Y,Z}]$

Contribution of Z

$$\mathbf{i}_{X;Y,Z} - \mathbf{i}_{X;Y}$$

Markov Plane

$$\triangleright i: X - Y - Z$$

Learn X based on

Space $\mathcal{F}_{X \times Y \times Z}[P_X P_{Y,Z}]$

 \blacktriangleright (Y, Z): $i_{X:Y,Z}$

Contribution of Z

$$i_{X;Y,Z} - i_{X;Y}$$

i_{X:Y} Markov Component

$$\triangleright$$
 $i: X - Y - Z$

Learn X based on

 $ightharpoonup Y: i_{X;Y}$

► (Y, Z): i_{X;Y,Z}

Space $\mathcal{F}_{X \times Y \times Z}[P_X P_{Y,Z}]$

Contribution of Z

$$\mathfrak{i}_{X;Z|Y}\triangleq\mathfrak{i}_{X;Y,Z}-\mathfrak{i}_{X;Y}$$

 $\mathbf{i}_{X;Y}$ Markov Component $\mathbf{i}_{X;Z|Y}$ Conditional Dependence

$$\triangleright$$
 i: $X - Y - Z$

Learn X based on

$$\rightarrow$$
 Y: $i_{X;Y}$

Space $\mathcal{F}_{X \times \mathcal{Y} \times \mathcal{Z}}[P_X P_{Y,Z}]$

Contribution of Z

$$\mathfrak{i}_{X;Z|Y}\triangleq\mathfrak{i}_{X;Y,Z}-\mathfrak{i}_{X;Y}$$

 $i_{X;Y}$ Markov Component

 $\mathfrak{i}_{X;Z|Y}$ Conditional Dependence

$$\blacktriangleright \|\mathbf{i}_{X;Z|Y}\| = 0 \text{ iff } X \perp \!\!\!\! \perp Z|Y$$

$$\triangleright$$
 i: $X - Y - Z$

Learn X based on

$$\rightarrow$$
 Y: $i_{X;Y}$

$$\cdot$$
 Y: $i_{X;Y}$

 \blacktriangleright (Y, Z): $i_{X \cdot Y, Z}$

Space
$$\mathcal{F}_{X \times Y \times Z}[P_X P_{Y,Z}]$$

Contribution of Z

$$\mathfrak{i}_{X;Z|Y} \triangleq \mathfrak{i}_{X;Y,Z} - \mathfrak{i}_{X;Y}$$

ix:y Markov Component

i_{X-7|Y} Conditional Dependence

$$\blacktriangleright \|\mathbf{i}_{X;Z|Y}\| = 0 \text{ iff } X \perp \!\!\!\! \perp Z|Y$$

$$\triangleright$$
 i: $X - Y - Z$

$$\|i_{X;Y,Z}\|^2 = \|i_{X;Y}\|^2 + \|i_{X;Z|Y}\|^2$$

 $\mathfrak{i}_{X;Z|Y}=\mathfrak{i}_{X;Y,Z}-\mathfrak{i}_{X;Y}\! :$ dependence Y cannot capture

 $\mathfrak{i}_{X;Z|Y}=\mathfrak{i}_{X;Y,Z}-\mathfrak{i}_{X;Y}\!.$ dependence Y cannot capture

 $\mathfrak{i}_{X;Z|Y}=\mathfrak{i}_{X;Y,Z}-\mathfrak{i}_{X;Y}\! :$ dependence Y cannot capture

 $\mathfrak{i}_{X;Z|Y}=\mathfrak{i}_{X;Y,Z}-\mathfrak{i}_{X;Y}\!.$ dependence Y cannot capture

nesting: separate conditional dependence from the joint

 $\mathfrak{i}_{X;Z|Y}=\mathfrak{i}_{X;Y,Z}-\mathfrak{i}_{X;Y}\!.$ dependence Y cannot capture

- nesting: separate conditional dependence from the joint
- ► training: maximize the sum of two H-scores
 - ho optimal solution: $\bar{f} \otimes \bar{g} = \mathfrak{i}_{X;Y}, \ f \otimes g = \mathfrak{i}_{X;Z|Y}$
 - ▶ measure the strength of conditional dependence

$$\cdots$$
 X_{-3} X_{-2} X_{-1} X_0 \cdots

 X_{-1} X_0 ···

"Looking Back"

▶ previous state: $i_{X_0;X_{-1}}$

Learn X_0 based on

$$X_{-2}$$
 X_{-1} X_0 ···

"Looking Back"

▶ previous state: $i_{X_0;X_{-1}}$

Learn X₀ based on

▶ past 2 states: $i_{X_0;(X_{-1},X_{-2})}$

$$\cdots$$
 X_{-3} X_{-2} X_{-1} X_0 \cdots

"Looking Back"

Learn X_0 based on

- ▶ previous state: $i_{X_0;X_{-1}}$
- ► past 2 states: $i_{X_0;(X_{-1},X_{-2})}$:
- ▶ past *n* states: $i_{X_0;(X_{-1},\dots,X_{-n})}$

$$\cdots$$
 X_{-3} X_{-2} X_{-1} X_0 \cdots

"Looking Back"

- ▶ previous state: $i_{X_0;X_{-1}}$
- Learn X_0 based on
- ► past 2 states: $i_{X_0;(X_{-1},X_{-2})}$:
- ▶ past *n* states: $i_{X_0;(X_{-1},\dots,X_{-n})}$
- ► Gain from ℓ -th layer $i_{\ell} \triangleq i_{X_0;X_{-\ell}|(X_{-1},\cdots,X_{-\ell+1})}$
 - riangleright conditional dependence at lag ℓ

$$\cdots$$
 X_{-3} X_{-2} X_{-1} X_0 \cdots

"Looking Back"

- ▶ previous state: $i_{X_0;X_{-1}}$
- Learn X_0 based on
- ► past 2 states: $i_{X_0;(X_{-1},X_{-2})}$:
- ▶ past *n* states: $i_{X_0;(X_{-1},\cdots,X_{-n})}$
- ► Gain from ℓ -th layer $i_{\ell} \triangleq i_{X_0; X_{-\ell} | (X_{-1}, \dots, X_{-\ell+1})}$
 - \triangleright conditional dependence at lag ℓ
- ► Orthogonal decomposition
 - ▷ Dependence between X_0 and past n states $=\sum_{\ell=1}^n \mathbf{i}_{\ell}$

 \blacktriangleright $\ell\text{-th}$ branch learns $i_\ell\!\!:$ conditional dependence at lag ℓ

▶ ℓ -th branch learns i_{ℓ} : conditional dependence at lag ℓ ▷ top ℓ branches: dependence between X_0 and past ℓ states

- ▶ ℓ -th branch learns i_{ℓ} : conditional dependence at lag ℓ ▷ top ℓ branches: dependence between X_0 and past ℓ states
- ▶ dependence "spectrum" over lags: $\{\|i_{\ell}\|^2, \ell \ge 1\}$

- ▶ ℓ -th branch learns i_{ℓ} : conditional dependence at lag ℓ ▷ top ℓ branches: dependence between X_0 and past ℓ states
- ▶ dependence "spectrum" over lags: $\{\|i_{\ell}\|^2, \ell \geq 1\}$
 - ho Markov Chain of Order M \Longrightarrow cutoff at $\ell = M$

Sequence Observations

► Dependence on the History?

- ► Dependence on the History?
- ► First/Second/Third-Order?

- ► Dependence on the History?
- ► First/Second/Third-Order?
- * Plot Dependence Spectrum $\|\mathbf{i}_{\ell}\|^2$, $\ell \geq 1$

- ► Dependence on the History?
- ► First/Second/Third-Order?
- * Plot Dependence Spectrum $\|\mathbf{i}_{\ell}\|^2$, $\ell \geq 1$

- ► Dependence on the History?
- ► First/Second/Third-Order?
- * Plot Dependence Spectrum $\|\mathbf{i}_{\ell}\|^2$, $\ell \geq 1$

SUMMARY

SUMMARY

- ► Feature Geometry
 - ▶ Feature Learning ↔ Geometric Operations
 - ▶ Nesting Technique
- ► Case Study: Learning Random Processes
 - Decompose Sequential Dependence

LEARN MORE

► arXiv: 2309.10140

