SEQUENTIAL DEPENDENCE DECOMPOSITION
& FEATURE LEARNING

Xiangxiang Xu
Joint work with Prof. Lizhong Zheng

Allerton Conference 2023



SEQUENCES

> DOW JONES ow sones industriai Average

Dow Jones - USD

September 2023

34,006.88 +43.04

107 ALL

35,769

33,973

32,178

30,383

September
I,

» Videos
» exampe of

dependnce 1in

plai

tetx



SHANNON’'S EXPERIMENTS [1948]

Guessing Next Letter

1. = solve

Claude E Shannon. A Mathematical Theory of Communication. 1948.



SHANNON’'S EXPERIMENTS [1948]

Guessing Next Letter

1. = solve

» count the transition: DEPENDENCE
> “E” followed by N: 0.5, P: 0.25, ‘SPC": 0.25

Claude E Shannon. A Mathematical Theory of Communication. 1948.



SHANNON’'S EXPERIMENTS [1948]

Guessing Next Letter

1. = solve
2. ﬁ — solve ﬁ

» count the transition: DEPENDENCE
> “E” followed by N: 0.5, P: 0.25, ‘SPC": 0.25

» predict based on the last letter and digram frequency

Claude E Shannon. A Mathematical Theory of Communication. 1948.



SHANNON’'S EXPERIMENTS [1948]

Guessing Next Letter

1. = solve
2. ﬁ — solve ﬁ

» count the transition: DEPENDENCE
> “E” followed by N: 0.5, P: 0.25, ‘SPC": 0.25

» predict based on the last letter and digram frequency
» generate a Markov chain of letters

Claude E Shannon. A Mathematical Theory of Communication. 1948.



SHANNON’'S EXPERIMENTS [1948]

Guessing Next Letter

1. = solve
2. ﬁ — solve ﬁ

» count the transition: DEPENDENCE
> “E” followed by N: 0.5, P: 0.25, ‘SPC": 0.25

» predict based on the last letter and digram frequency
» generate a Markov chain of letters

> word-level construction
> trigram, n-gram (higher order Markov chains)

Claude E Shannon. A Mathematical Theory of Communication. 1948.
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Guessing Next Letter

Second-order approximation (digram structure as in English).
ON IE ANTSOUTINYS ARE T INCTORE ST BE S DEAMY
ACHIN D ILONASIVE TUCOOWE AT TEASONARE FUSO
TIZIN ANDY TOBE SEACE CTISBE

Third-order approximation (trigram structure as in English).
IN NO IST LAT WHEY CRATICT FROURE BIRS GROCID
PONDENOME OF DEMONSTURES OF THE REPTAGIN IS
REGOACTIONA OF CRE

264 SECRET AND URGENT
T 5 XII

Operations

s

20,000 words, but are more im-

» frequency tables

» opens a book...
select a letter at random

o roBwmmond

abr.. ;
abs.. 1 s s

Bl coviaane E B
Fletcher Pratt. Secret and Urgent. 1939.

Claude E Shannon. A Mathematical Theory of Communication. 1948.
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» n-gram tableon X = |X|" entries
» “book” may not contain all combinations

Deep Learning Solution
» entries are structured
» have “table” parameterized
> deep neural nets: LSTM, Transformer @
» learn parameters from “books”

Hidden Parts?
» black-box features
» dependence structure, e.g,, the “order”
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LEARNING STATISTICAL DEPENDENCE

Canonical Dependence Kernel (CDK)

~ Pxy _ > ixy € Faxy
PXPY > ||ix;yH =0iffXLY

Learning CDK from Features
L .
H#(£,9) 2 5 (il = iy = F© g1)

» apply neural feature extractors to process data

» maximize #(f,g) = f®g=ixy
> compute ||ix.y|| from features
> prediction/estimation

Pxv(xly) = Px(X) - [T+ f(x) - g(¥)] 5
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ix.y Markov Component

ix.y

ix.zv Conditional Dependence

. Markov Plane
> [lixzyll = O iff X 1L 2]y v

>i:X-Y—-Z

vzl = llxvll® + llixzyl®
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LEARNING CONDITIONAL DEPENDENCE

ix.z)y = ixy,z — ixy: dependence Y cannot capture

» nesting: separate conditional dependence from the joint
» training: maximize the sum of two H-scores

> optimal solution: f®g=ixy, f®g= ix.z)y

> measure the strength of conditional dependence
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X3 X2 X4 Xo

“Looking Back” -
» previous state: ix,.x

Learn Xo based on > Past2states:ix, o, x,)

> past n states: ix;(x,,... x.)

> Gain from £-th layer iy £ iy .x 106, X0)

> conditional dependence at lag ¢
» Orthogonal decomposition

n
> Dependence between X, and past n states = Zi‘
=1
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» (-th branch learns i,: conditional dependence at lag ¢
> top ¢ branches: dependence between Xy and past ¢ states

» dependence “spectrum” over lags: {|lis||?, ¢ > 1}
> Markov Chain of OrderM =  cutoffat{ =M
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» First/Second/Third-Order?
x Plot Dependence Spectrum |[ig||%, £ > 1
0,
1 2 3
EEEE B E B B B EE B NN BN

b m
0
1 2 3

10



SUMMARY




SUMMARY

ix.zy

ixy
1 X=-Y—-Z

» Feature Geometry

> Feature Learning <> Geometric Operations
> Nesting Technique

» Case Study: Learning Random Processes
> Decompose Sequential Dependence

LEARN MORE

» arXiv: 2309.10140
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