SEQUENTIAL DEPENDENCE DECOMPOSITION
& FEATURE LEARNING

Xiangxiang Xu
Joint work with Prof. Lizhong Zheng

Allerton Conference 2023

SEQUENCES

> DOW JONES ow sones industriai Average

Dow Jones - USD

September 2023

34,006.88 +43.04

107 ALL

35,769

33,973

32,178

30,383

September
I,

» Videos
» exampe of

dependnce 1in

plai

tetx

SHANNON’'S EXPERIMENTS [1948]

Guessing Next Letter

1. = solve

Claude E Shannon. A Mathematical Theory of Communication. 1948.

SHANNON’'S EXPERIMENTS [1948]

Guessing Next Letter

1. = solve

» count the transition: DEPENDENCE
> “E” followed by N: 0.5, P: 0.25, ‘SPC": 0.25

Claude E Shannon. A Mathematical Theory of Communication. 1948.

SHANNON’'S EXPERIMENTS [1948]

Guessing Next Letter

1. = solve
2. ﬁ — solve ﬁ

» count the transition: DEPENDENCE
> “E” followed by N: 0.5, P: 0.25, ‘SPC": 0.25

» predict based on the last letter and digram frequency

Claude E Shannon. A Mathematical Theory of Communication. 1948.

SHANNON’'S EXPERIMENTS [1948]

Guessing Next Letter

1. = solve
2. ﬁ — solve ﬁ

» count the transition: DEPENDENCE
> “E” followed by N: 0.5, P: 0.25, ‘SPC": 0.25

» predict based on the last letter and digram frequency
» generate a Markov chain of letters

Claude E Shannon. A Mathematical Theory of Communication. 1948.

SHANNON’'S EXPERIMENTS [1948]

Guessing Next Letter

1. = solve
2. ﬁ — solve ﬁ

» count the transition: DEPENDENCE
> “E” followed by N: 0.5, P: 0.25, ‘SPC": 0.25

» predict based on the last letter and digram frequency
» generate a Markov chain of letters

> word-level construction
> trigram, n-gram (higher order Markov chains)

Claude E Shannon. A Mathematical Theory of Communication. 1948.

SHANNON'S EXPERIMENTS 48]

Guessing Next Letter

Second-order approximation (digram structure as in English).
ON IE ANTSOUTINYS ARE T INCTORE ST BE S DEAMY
ACHIN D ILONASIVE TUCOOWE AT TEASONARE FUSO
TIZIN ANDY TOBE SEACE CTISBE

Third-order approximation (trigram structure as in English).
IN NO IST LAT WHEY CRATICT FROURE BIRS GROCID
PONDENOME OF DEMONSTURES OF THE REPTAGIN IS
REGOACTIONA OF CRE

Claude E Shannon. A Mathematical Theory of Communication. 1948.

SHANNON’'S EXPERIMENTS [1948]

Guessing Next Letter

Second-order approximation (digram structure as in English).
ON IE ANTSOUTINYS ARE T INCTORE ST BE S DEAMY
ACHIN D ILONASIVE TUCOOWE AT TEASONARE FUSO
TIZIN ANDY TOBE SEACE CTISBE

Third-order approximation (trigram structure as in English).
IN NO IST LAT WHEY CRATICT FROURE BIRS GROCID
PONDENOME OF DEMONSTURES OF THE REPTAGIN IS
REGOACTIONA OF CRE

264 SECRET AND URGENT
T 5 XII

Operations

s

20,000 words, but are more im-

» frequency tables

oy Ada.. 2 Ana..
) 3 anc

5 aig. .. 8 .
Fletcher Pratt. Secret and Urgent. 1939.

o roBwmmond

Claude E Shannon. A Mathematical Theory of Communication. 1948.

SHANNON’'S EXPERIMENTS [1948]

Guessing Next Letter

Second-order approximation (digram structure as in English).
ON IE ANTSOUTINYS ARE T INCTORE ST BE S DEAMY
ACHIN D ILONASIVE TUCOOWE AT TEASONARE FUSO
TIZIN ANDY TOBE SEACE CTISBE

Third-order approximation (trigram structure as in English).
IN NO IST LAT WHEY CRATICT FROURE BIRS GROCID
PONDENOME OF DEMONSTURES OF THE REPTAGIN IS
REGOACTIONA OF CRE

264 SECRET AND URGENT
T 5 XII

Operations

s

20,000 words, but are more im-

» frequency tables

» opens a book...
select a letter at random

o roBwmmond

abr.. ;
abs.. 1 s s

Bl coviaane E B
Fletcher Pratt. Secret and Urgent. 1939.

Claude E Shannon. A Mathematical Theory of Communication. 1948.

MARKOV APPROXIMATION

» n-gram tableon X = |X|" entries
» “book” may not contain all combinations

MARKOV APPROXIMATION

» n-gram tableon X = |X|" entries
» “book” may not contain all combinations

Deep Learning Solution

» entries are structured

MARKOV APPROXIMATION

» n-gram tableon X = |X|" entries
» “book” may not contain all combinations

Deep Learning Solution
» entries are structured
» have “table” parameterized
> deep neural nets: LSTM, Transformer @

» learn parameters from “books”

MARKOV APPROXIMATION

» n-gram tableon X = |X|" entries
» “book” may not contain all combinations

Deep Learning Solution
» entries are structured
» have “table” parameterized
> deep neural nets: LSTM, Transformer @
» learn parameters from “books”

Hidden Parts?
» black-box features
» dependence structure, e.g,, the “order”
EEEEEE B BSE E E E R EEE B ERE

FEATURE GEOMETRY

FEATURE GEOMETRY

(X,Y) ~ Pxy variables of interest, e.g., input and output pair
Feature Space

» Features of X: Fy £ {X — R}

FEATURE GEOMETRY

(X,Y) ~ Pxy variables of interest, e.g., input and output pair
Feature Space

» Features of X: Fy = {X — R}
» Inner Product {f1,f,) £ Ep, [fi(X)f2(X)]

FEATURE GEOMETRY

(X,Y) ~ Pxy variables of interest, e.g., input and output pair
Feature Space

» Features of X: Fy £ {X — R}

» Inner Product {fi,f2) £ Ep, [i(X)2(X)]
> Induced geometry: norm, orthogonality, projection, etc.

FEATURE GEOMETRY

(X,Y) ~ Pxy variables of interest, e.g., input and output pair
Feature Space

» Features of X: Fy £ {X — R}

» Inner Product {fi,f2) £ Ep, [i(X)2(X)]

> Induced geometry: norm, orthogonality, projection, etc.
> Py: Metric (distribution)

FEATURE GEOMETRY

(X,Y) ~ Pxy variables of interest, e.g., input and output pair
Feature Space

» Features of X: Fy £ {X — R}

» Inner Product {fi,f2) £ Ep, [i(X)2(X)]

> Induced geometry: norm, orthogonality, projection, etc.
> Py: Metric (distribution)

» Inner product spaces Fx[Px], Fy[Py]

FEATURE GEOMETRY

(X,Y) ~ Pxy variables of interest, e.g., input and output pair
Feature Space

» Features of X: Fy £ {X — R}

» Inner Product {fi,f2) £ Ep, [i(X)2(X)]

> Induced geometry: norm, orthogonality, projection, etc.
> Py: Metric (distribution)

» Inner product spaces Fx[Px], Fy[Py]

Joint functions Fx,.y[PxPy]

» Metric PxPy helps decouple the dependence

FEATURE GEOMETRY

(X,Y) ~ Pxy variables of interest, e.g., input and output pair
Feature Space

» Features of X: Fy £ {X — R}

» Inner Product {fi,f2) £ Ep, [i(X)2(X)]

> Induced geometry: norm, orthogonality, projection, etc.
> Py: Metric (distribution)

» Inner product spaces Fx[Px], Fy[Py]

Joint functions Fx,.y[PxPy]
» Metric PxPy helps decouple the dependence
» Product of fe Fx,g € Fy: f®g: (X,y) — f(X)g(y)

FEATURE GEOMETRY

(X,Y) ~ Pxy variables of interest, e.g., input and output pair
Feature Space

» Features of X: Fy £ {X — R}

» Inner Product {fi,f2) £ Ep, [i(X)2(X)]

> Induced geometry: norm, orthogonality, projection, etc.
> Py: Metric (distribution)

» Inner product spaces Fx[Px], Fy[Py]

Joint functions Fx,.y[PxPy]
» Metric PxPy helps decouple the dependence
» Product of fe Fx,g € Fy: f®g: (X,y) — f(X)g(y)

R
A) . A f:(ﬁvth’)
> f®g_2f,®g, for k-dim features oo an

i=1 4

LEARNING STATISTICAL DEPENDENCE

Canonical Dependence Kernel (CDK)

LEARNING STATISTICAL DEPENDENCE

Canonical Dependence Kernel (CDK)

. 1 > i)(;y S :TXXH
PxPy > [lixy]| = O ifF X LY

LEARNING STATISTICAL DEPENDENCE

Canonical Dependence Kernel (CDK)

_ PX,Y -1 > iX;Y € ?XX‘EJ
PxPy > [lixy|| = 0 iff X LY

Learning CDK from Features

#(5,9) 2 5 (ix I = lixy ~ Fo ol

LEARNING STATISTICAL DEPENDENCE

Canonical Dependence Kernel (CDK)

~ Pxy _ > ixy € Faxy
PXPY > ||ix;yH =0iffXLY

Learning CDK from Features
L :
H#(£,9) 2 5 (il = iy = F© g1)

» learning ix.y by maximizing the H-score

LEARNING STATISTICAL DEPENDENCE

Canonical Dependence Kernel (CDK)

~ Pxy _ > ixy € Faxy
PXPY > ||ix;yH =0iffXLY

Learning CDK from Features
L .
H#(£,9) 2 5 (il = iy = F© g1)

» learning ix.y by maximizing the H-score

» efficiently computable from data samples {(x;, y;)}L,

7' coulfX),9(1) ~ 5 - E[P(¥)] - E[g(Y)]

LEARNING STATISTICAL DEPENDENCE

Canonical Dependence Kernel (CDK)

~ Pxy _ > ixy € Faxy
PXPY > ||ix;yH =0iffXLY

Learning CDK from Features
L .
H#(£,9) 2 5 (il = iy = F© g1)

» learning ix.y by maximizing the H-score

» efficiently computable from data samples {(x;, y;)}L,
- 1
S ov(f(X).9(1) ~ 5 - EIF(X)] - E[g°(V)
N——— N——

7 22 (xi)g(x) 7 i)

LEARNING STATISTICAL DEPENDENCE

Canonical Dependence Kernel (CDK)

~ Pxy _ > ixy € Faxy
PXPY > ||ix;yH =0iffXLY

Learning CDK from Features
L :
H#(£,9) 2 5 (il = iy = F© g1)

» apply neural feature extractors to process data

LEARNING STATISTICAL DEPENDENCE

Canonical Dependence Kernel (CDK)

~ Pxy _ > ixy € Faxy
PXPY > ||ix;yH =0iffXLY

Learning CDK from Features
L :
H#(£,9) 2 5 (il = iy = F© g1)
» apply neural feature extractors to process data
AH

» maximize #(f,g) = f®g=ixy

LEARNING STATISTICAL DEPENDENCE

Canonical Dependence Kernel (CDK)

~ Pxy _ > ixy € Faxy
PXPY > ||ix;yH =0iffXLY

Learning CDK from Features
L .
H#(£,9) 2 5 (il = iy = F© g1)

» apply neural feature extractors to process data

» maximize #(f,g) = f®g=ixy
> compute ||ix.y|| from features
> prediction/estimation

Pxv(xly) = Px(X) - [T+ f(x) - g(¥)] 5

ONE MORE VARIABLE

Learn X based on " V* Wy

ONE MORE VARIABLE

Learn X based on " V* Wy Space Fxxyxz[PxPy.z]
> (Y,Z)I ix;y’z

ONE MORE VARIABLE

Learn X based on " V* Wy Space Fxxyxz[PxPy.z]
> (Y,Z)I ix;y’z

Contribution of 7

ix.yz —ixy

ONE MORE VARIABLE

Learn X based on " V* Wy Space Fxxyxz[PxPyz]
> (Y,Z)I ix;y’z

Contribution of 7

ix.yz —ixy

ix.y

Markov Plane
> i:X=Y—=2Z

ONE MORE VARIABLE

Learn X based on " V* Wy Space Fxxyxz[PxPyz]
> (Y,Z)I ix;y’z

Contribution of 7

ix.yz —ixy

ix.y Markov Component

ix.y

Markov Plane
> i:X=Y—=2Z

ONE MORE VARIABLE

Learn X based on " V* Wy Space Fxxyxz[PxPyz]
> (Y,Z)I ix;y’z

Contribution of 7

. A . . .
Wozly = WY,Z2 — WXy Y;z|y

ix.y Markov Component

ix.y

ix.zv Conditional Dependence
Markov Plane

>i:X-Y—-Z

ONE MORE VARIABLE

Learn X based on " V* Wy Space Fxxyxz[PxPyz]
> (Y,Z)I ix;y’z

Contribution of 7

. A . . .
Wozly = WY,Z2 — WXy Y;z|y

ix.y Markov Component

ix.y

ix.zv Conditional Dependence

. Markov Plane
> [lixzyll = O iff X 1L 2]y v

>i:X-Y—-Z

ONE MORE VARIABLE

Learn X based on " V* Wy Space Fxxyxz[PxPyz]
> (Y,Z)I ix;y’z

Contribution of 7

. A . . .
Wozly = WY,Z2 — WXy Y;z|y

ix.y Markov Component

ix.y

ix.zv Conditional Dependence

. Markov Plane
> [lixzyll = O iff X 1L 2]y v

>i:X-Y—-Z

vzl = llxvll® + llixzyl®

LEARNING CONDITIONAL DEPENDENCE

ix.z)y = ixy,z — ixy: dependence Y cannot capture

LEARNING CONDITIONAL DEPENDENCE

ix.z)y = ixy,z — ixy: dependence Y cannot capture

LEARNING CONDITIONAL DEPENDENCE

ix.z)y = ixy,z — ixy: dependence Y cannot capture

LEARNING CONDITIONAL DEPENDENCE

ix.z)y = ixy,z — ixy: dependence Y cannot capture

» nesting: separate conditional dependence from the joint

LEARNING CONDITIONAL DEPENDENCE

ix.z)y = ixy,z — ixy: dependence Y cannot capture

» nesting: separate conditional dependence from the joint
» training: maximize the sum of two H-scores

> optimal solution: f®g=ixy, f®g= ix.z)y

> measure the strength of conditional dependence

SEQUENTIAL DEPENDENCE DECOMPOSITION

X3 X2 X4 Xo

SEQUENTIAL DEPENDENCE DECOMPOSITION

X Xo

“Looking Back” -
» previous state: ix,.x

Learn X, based on

SEQUENTIAL DEPENDENCE DECOMPOSITION

X2 Xa Xo
“Looking Back” _
» previous state: ix,.x

Learn Xo based on > Past2states:ix, o, x,)

SEQUENTIAL DEPENDENCE DECOMPOSITION

X3 X2 X4 Xo

“Looking Back” -
» previous state: ix,.x

Learn Xo based on > Past2states:ix, o, x,)

> past n states: ix;(x,,... x.)

SEQUENTIAL DEPENDENCE DECOMPOSITION

X3 X2 X4 Xo

“Looking Back” -
» previous state: ix,.x

Learn Xo based on > Past2states:ix, o, x,)

> past n states: ix;(x,,... x.)

> Gain from £-th layer iy £ iy .x 106, X0)

> conditional dependence at lag ¢

SEQUENTIAL DEPENDENCE DECOMPOSITION

X3 X2 X4 Xo

“Looking Back” -
» previous state: ix,.x

Learn Xo based on > Past2states:ix, o, x,)

> past n states: ix;(x,,... x.)

> Gain from £-th layer iy £ iy .x 106, X0)

> conditional dependence at lag ¢
» Orthogonal decomposition

n
> Dependence between X, and past n states = Zi‘
=1

LEARNING THE DECOMPOSITION

LEARNING THE DECOMPOSITION

» (-th branch learns i,: conditional dependence at lag ¢

LEARNING THE DECOMPOSITION

» (-th branch learns i,: conditional dependence at lag ¢
> top ¢ branches: dependence between Xy and past ¢ states

LEARNING THE DECOMPOSITION

» (-th branch learns i,: conditional dependence at lag ¢
> top ¢ branches: dependence between Xy and past ¢ states

» dependence “spectrum” over lags: {|lis||?, ¢ > 1}

LEARNING THE DECOMPOSITION

» (-th branch learns i,: conditional dependence at lag ¢
> top ¢ branches: dependence between Xy and past ¢ states

» dependence “spectrum” over lags: {|lis||?, ¢ > 1}
> Markov Chain of OrderM = cutoffat{ =M

Sequence Observations

» Dependence on the History?

10

Sequence Observations
» Dependence on the History?
» First/Second/Third-Order?

10

Sequence Observations
» Dependence on the History?
» First/Second/Third-Order?

x Plot Dependence Spectrum |[ig||%, £ > 1

10

Sequence Observations
» Dependence on the History?
» First/Second/Third-Order?

x Plot Dependence Spectrum |[ig||%, £ > 1

EEEE B E BN B EE N NDEBEE
EEEEEE B B E R R R EERE BN NN
025m
0
12 3

10

Sequence Observations
» Dependence on the History?
» First/Second/Third-Order?
x Plot Dependence Spectrum |[ig||%, £ > 1
0,
1 2 3
EEEE B E B B B EE B NN BN

b m
0
1 2 3

10

SUMMARY

SUMMARY

ix.zy

ixy
1 X=-Y—-Z

» Feature Geometry

> Feature Learning <> Geometric Operations
> Nesting Technique

» Case Study: Learning Random Processes
> Decompose Sequential Dependence

LEARN MORE

» arXiv: 2309.10140

	Feature Geometry
	Summary

