
The Geometric Structure of Generalized Softmax
Learning

Xiangxiang Xu∗, Shao-Lun Huang†, Lizhong Zheng‡ and Lin Zhang†
∗ Dept. of Electronic Engineering, Tsinghua University, Beijing 100084, China

† Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China
‡ Dept. of EECS, Massachusetts Institute of Technology, Cambridge, MA 02139-4307, USA

Email: ∗xuxx14@mails.tsinghua.edu.cn, †{shaolun.huang, linzhang}@sz.tsinghua.edu.cn, ‡lizhong@mit.edu

©2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.
IEEE Xplore link to the published article: DOI 10.1109/ITW.2018.8613303.

Abstract—In this paper, we formulate the generalized softmax
learning (GSL) problem, as a symmetric extension of the softmax
regression problem. We further study the geometric structure of
GSL and demonstrate the equivalence of GSL and the original
softmax regression problem. Besides, this geometric structure
indicates the symmetry between a neural network and its reverse
network, and the symmetric roles of the weights and feature in
a neural network. Finally, we present a numerical simulation to
verify these symmetry properties in neural networks.

I. INTRODUCTION

Given a pair of discrete random variables X,Y with the
joint distribution PX,Y , we study the generalized softmax
learning (GSL) problem of approximating the distribution
PX,Y by the exponential family of the form:

QX,Y (x, y) =
ef

T(x)g(y)+a(x)+b(y)∑
(x′,y′)∈X×Y e

fT(x′)g(y′)+a(x′)+b(y′)
, (1)

where f : X → Rk, g : Y → Rk are k-dimensional functions,
and a : X → R, b : Y → R are scalar functions of X,Y ,
respectively. These functions are the parameters to be designed
to minimize the K-L divergence between PX,Y and QX,Y ,
which can be expressed by an M-projection problem:

MEk
(PX,Y ) , arg min

QX,Y ∈Ek

D(PX,Y ‖QX,Y ), (2)

where Ek is the family of distributions of the form (1).
Our goal in this paper is to investigate the properties of
MEk

(PX,Y ) and its applications in machine learning.
To see how (2) can be applied to machine learning, recall

that in the original softmax regression, the discriminant model1

P̃Y |X(y|x) =
ef

T(x)g(y)+b(y)∑
y′∈Y e

fT(x)g(y′)+b(y′)
(3)

is used to predict y from x, where the feature function f(x) ∈
Rk, weights g(y) ∈ Rk, and bias b(y) ∈ R are the parameters
for training, so that the K-L divergence between PX,Y and
PX P̃Y |X is minimized. Note that the softmax function (3)
is not symmetric to X,Y . Therefore, it is in general unclear

1The function f(x) here models the case that in neural networks, the input
to the softmax regression layer is a feature of data x generated from the
hidden layers, and the design of f(x) corresponds to the design of parameters
in hidden layers. Also note that the ordinary softmax regression corresponds
to the case f(x) = x.

whether or not the trained parameters for predicting Y from
X can also be used in the symmetric problem of predicting
X from Y . In this paper, we reveal the symmetry implied
in softmax regression with the developed geometric structure
of GSL. In particular, we show that the optimal solutions
of the original softmax regression problem coincide with the
solutions of GSL (2), and such optimal solutions, due to the
symmetry form of (1), are symmetric to both X and Y . As a
result, the optimal feature function f(x) for predicting Y from
X is precisely the optimal weights for predicting X from Y
in the symmetric softmax regression problem.

The rest of this paper is organized as follows. We first
introduce the notations in Section II, then explore the existence
and non-uniqueness of the solutions of GSL (2) in Section III.
In Section IV, we develop a geometric structure of (2), which
leads to a Pythagorean theorem. With this structure, we show
that the solutions of (2) coincide with the solutions of the
original softmax regression problem and further demonstrate
the symmetric roles of feature and weights in a neural net-
work. Furthermore, Section V illustrates the theoretical results
through a numerical simulation. Finally, Section VI presents
some proof details, and Section VII concludes the paper.

II. PROBLEM FORMULATION

In this paper, the alphabets X and Y are both finite sets
with X = {1, 2, . . . , |X|} and Y = {1, 2, . . . , |Y|}. We use
subscripts to distinguish the joint distribution and marginal dis-
tributions, e.g., the marginal distributions of joint distribution
QX,Y are denoted by QX and QY . We use PX×Y to denote
the probability simplex supported on X×Y, and relint(PX×Y)
to denote the relative interior of PX×Y. Besides, we will focus
on the case where PX,Y ∈ relint(PX×Y).

In GSL, the exponential family Ek can be equivalently
expressed as{

QX,Y ∈ PX×Y : QX,Y (x, y) = ef
T(x)g(y)+a(x)+b(y)

}
. (4)

To obtain this equivalence, first, note that the set (4) is
a subset of Ek. Then, with b′ defined as b′(y) = b(y) −
log
(∑

(x′,y′)∈X×Y e
fT(x′)g(y′)+a(x′)+b(y′)

)
for QX,Y in (1),

we have QX,Y (x, y) = ef
T(x)g(y)+a(x)+b′(y).

In our development, it is more convenient to use func-
tions α, β to replace the original a, b in (4), with definitions
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α(x) , logPX(x)−a(x) and β(y) , logPY (y)− b(y). Thus
distributions in Ek can be expressed as

QX,Y (x, y) = PX(x)PY (y)ef
T(x)g(y)−α(x)−β(y), (5)

and we use QX,Y = Q[f, g, α, β] to denote this parameter-
ization. Similarly, we use P̃X,Y = P̃ [f, g, b] to denote the
joint distribution P̃X,Y , PX P̃Y |X in the original softmax
regression problem, where P̃Y |X is the estimated conditional
probability defined in (3).

Moreover, we use notations F,G,α,β to characterize func-
tions f, g, α, β, with F = [f(1), . . . , f(|X|)]T ∈ R|X|×k, G =
[g(1), . . . , g(|Y|)]T ∈ R|Y|×k, α = [α(1), . . . , α(|X|)]T ∈
R|X|, and β = [β(1), . . . , β(|Y|)]T ∈ R|Y|.

III. EXISTENCE AND NON-UNIQUENESS

The following lemma is useful for illustrating the existence
of (2), with its proof presented in Section VI.

Lemma 1. For all QX,Y ∈ Ek with D(PX,Y ‖QX,Y ) ≤
D(PX,Y ‖PXPY ), there exist parameters f, g, α, β and a
constant M(PX,Y ) independent of QX,Y , such that QX,Y =
Q[f, g, α, β] and

max
(x,y)∈X×Y

{‖f(x)‖, ‖g(y)‖, |α(x)|, |β(y)|} ≤M(PX,Y ).

Then we have the following theorem.

Theorem 1. The solutions of the GSL problem (2) exist.

Proof: Since PXPY = Q[0, 0, 0, 0] ∈ Ek, to find
QX,Y ∈ Ek that minimizes D(PX,Y ‖QX,Y ), it suffices to
consider the QX,Y ∈ Ek that satisfies D(PX,Y ‖QX,Y ) ≤
D(PX,Y ‖PXPY ). Such QX,Y , from Lemma 1, belongs to the
set{

QX,Y ∈ PX×Y : QX,Y = Q[f, g, α, β],

max
(x,y)∈X×Y

{‖f(x)‖, ‖g(y)‖, |α(x)|, |β(y)|} ≤M
}
,

(6)

where M is a constant independent of QX,Y .
Note that D(PX,Y ‖QX,Y ) is a continuous function of QX,Y

on the compact set (6), thus can attain its minima.
In the following, we construct an example to show that the

optimal solutions of (2) can be non-unique. First, we introduce
a useful lemma, of which the proof is presented in Section VI.

Lemma 2. For a distribution RX,Y ∈ PX×Y with correspond-
ing PMI (Pointwise Mutual Information) matrix Γ = [Γx,y] ∈
R|X|×|Y| defined by

Γx,y , log
RX,Y (x, y)

RX(x)RY (y)
, ∀ (x, y) ∈ X× Y, (7)

we have RX,Y ∈ Ek if rank(Γ) ≤ k, and RX,Y /∈ Ek if
rank(Γ) > k + 2.

Consider the GSL example with parameters k = 1, |X| =
|Y| = 4, and PX,Y given by

PX,Y (x, y) = u δx,y + v(1− δx,y), (8)

where u > v > 0, and δ is the Kronecker delta.
Suppose QX,Y is the unique element of ME1

(PX,Y ), then
QX,Y must have the same form as PX,Y , i.e., ∃u′, v′ such that
QX,Y (x, y) = u′δx,y + v′(1 − δx,y). Otherwise, we can con-
struct Q′X,Y ∈ E1 via permuting the elements in QX,Y , such
that QX,Y 6= Q′X,Y and D(PX,Y ‖QX,Y ) = D(PX,Y ‖Q′X,Y ),
which contradicts the uniqueness of QX,Y .

If u′ 6= v′, then the PMI matrix of QX,Y has full rank
4 > k + 2 = 3. From Lemma 2, we have QX,Y /∈ E1.
On the other hand, u′ = v′ implies QX,Y = PXPY . This
is impossible, however, as we can find Q′′X,Y ∈ E1 such that
D(PX,Y ‖Q′′X,Y ) < D(PX,Y ‖PXPY ). An example of such
Q′′X,Y is

Q′′X,Y (x, y) =

{
u, if x = y = 1,
1−u
15 , otherwise.

As a consequence, the M-projection of this PX,Y onto E1

is not unique.

IV. THE GEOMETRIC STRUCTURE

In this section, we consider the geometric structure of GSL
and present its applications in machine learning.

A. Stationary Distributions of GSL
Suppose QX,Y = Q[f, g, α, β] ∈ MEk

(PX,Y ), then
(f, g, α, β) is a stationary point of the Lagrange function
L(f, g, α, β, λ) corresponding to the GSL problem (2), where
L is defined as

L = D(PX,Y ‖QX,Y ) + λ

[∑
x′,y′

QX,Y (x′, y′)− 1

]
. (9)

The independent variables of L are all possible values
of functions f, g, α, β, i.e., {f(x), g(y), α(x), β(y)}(x,y)∈X×Y,
together with the Lagrange multiplier λ. The stationary points
of L satisfy that,

∂L

∂f(x)
=

∂L

∂g(y)
= 0, ∀ (x, y) ∈ X× Y, (10a)

∂L

∂α(x)
=

∂L

∂β(y)
= 0, ∀ (x, y) ∈ X× Y, (10b)

∂L

∂λ
=

∑
(x′,y′)∈X×Y

QX,Y (x′, y′)− 1 = 0. (10c)

To reduce these conditions, note that
D(PX,Y ‖QX,Y )

=
∑
x,y

PX,Y (x, y) log
PX,Y (x, y)

QX,Y (x, y)

= D(PX,Y ‖PXPY )− EPX,Y

[
fT(X)g(Y )

]
+ EPX

[α(X)] + EPY
[β(Y )] ,

(11)

then (10b) implies PX = λQX , PY = λQY , thus λ = 1. The
conditions (10) for stationary points then become

QX = PX , QY = PY , (12a)
EQX|Y [f(X) | Y ] = EPX|Y [f(X) | Y ] , (12b)

EQY |X [g(Y ) | X] = EPY |X [g(Y ) | X] . (12c)



EX
k
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k

Ek
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k

MEk
(PX,Y )

Fig. 1. Relationship between different distribution families

A distribution QX,Y = Q[f, g, α, β] ∈ Ek is called
a stationary distribution (of GSL) if it satisfies (12). Let
E0
k denote the set of all stationary distributions, then we

have MEk
(PX,Y ) ⊂ E0

k. Furthermore, from (12) we have
E0
k ⊂ EX

k ∩ EY
k , where EX

k and EY
k are the subsets of Ek

with definitions EX
k , {QX,Y ∈ Ek : QX = PX},EY

k ,
{QX,Y ∈ Ek : QY = PY }. The relationship between different
distribution families is shown in Fig. 1.

The set E0
k has the following properties.

Property 1. ∀k ∈ N+,E
0
k ⊂ E0

k+1.

Proof: For each QX,Y = Q[fk, gk, α, β] ∈ E0
k, we

can construct fk+1(x) = [fTk (x), 0]T ∈ Rk+1, gk+1(y) =
[gTk (y), 0]T ∈ Rk+1 , such that QX,Y = Q[fk+1, gk+1, α, β] ∈
E0
k+1.

Property 2 (Pythagorean theorem). ∀QX,Y ∈ E0
k,

D(PX,Y ‖QX,Y ) +D(QX,Y ‖PXPY ) = D(PX,Y ‖PXPY ).

Proof: For each QX,Y = Q[f, g, α, β] ∈ E0
k, we have

D(QX,Y ‖PXPY ) = EQX,Y

[
fT(X)g(Y )

]
− EQX

[α(X)] −
EQY

[β(Y )]. From the definition of E0
k in (12), we have

EQX
[α(X)] = EPX

[α(X)] ,EQY
[β(Y )] = EPY

[β(Y )], and

EQX,Y

[
fT(X)g(Y )

]
= EQX

[
fT(X)EQY |X [g(Y )|X]

]
= EPX

[
fT(X)EPY |X [g(Y )|X]

]
= EPX,Y

[
fT(X)g(Y )

]
.

The above relationships together with (11) lead to the
theorem.

Property 3. ∀ k ∈ N+,MEk
(PX,Y ) = E0

k if and only if
PX,Y = PXPY .

Proof: If PX,Y = PXPY ∈ E0
k, then MEk

(PX,Y ) =
{PX,Y } by definition. In addition, from Property 2, we have
D(PX,Y ‖QX,Y )+D(QX,Y ‖PXPY ) = D(PX,Y ‖PXPY ) = 0
for all QX,Y ∈ E0

k, which implies QX,Y = PX,Y = PXPY .
As a result, E0

k = {PX,Y } = MEk
(PX,Y ).

If MEk
(PX,Y ) = E0

k, then PXPY ∈ MEk
(PX,Y ). Since

PXPY = Q[f, 0, 0, 0] for all choices of f , (f, 0, 0, 0) should
satisfy the stationary point conditions (12). For all x̂ ∈ X,
let f(x) = [1x=x̂, 0, . . . , 0]T ∈ Rk, then (12b) implies that
∀y ∈ Y, PX|Y (x̂|y) = PX(x̂), thus PX,Y = PXPY .

PXPY

QX,Y

PX,Y

E0
k

Ek

Fig. 2. Pythagorean theorem for stationary distributions QX,Y ∈ E0
k:

D(PX,Y ‖PXPY ) = D(PX,Y ‖QX,Y ) +D(QX,Y ‖PXPY )

Property 1 demonstrates that {E0
k} forms a non-decreasing

sequence of sets. Property 2 gives a Pythagorean theorem on
E0
k, as shown in Fig. 2. Property 3 illustrates that, MEk

(PX,Y )
is a proper subset of stationary distributions E0

k unless X and
Y are independent.

B. Equivalence of Softmax Learning Problems

To establish the equivalence of GSL and the original soft-
max regression problem, we first show that softmax regression
is equivalent to the M-projection problem MEX

k
(PX,Y ).

In softmax regression, with a series of data samples
{(xi, yi)}Ni=1, the conditional distribution P̃Y |X (3) is esti-
mated by the softmax function based on the feature f(x) ∈ Rk,
weights g(y) ∈ Rk and bias b(y) ∈ R. The parameters (f, g, b)
are then chosen to maximize the empirical expectation of log-
likelihood function log P̃Y |X :

1

N

N∑
i=1

log P̃Y |X(yi|xi) = EPX,Y

[
log P̃Y |X(Y |X)

]
,

which is equivalent to solving the optimization problem

minimize
f,g,b

D(PX,Y ‖P̃ [f, g, b]), (13)

where PX,Y is the empirical distribution of data samples.
To demonstrate the equivalence of (13) and the M-projection

problem MEX
k
(PX,Y ), it suffices to show that EX

k is the family
of distributions of the form P̃ [f, g, b], as will be clarified in
the following lemma.

Lemma 3. Given parameters f, g, the following conditions
are equivalent for distribution RX,Y :

1) ∃ b, such that RX,Y = P̃ [f, g, b].
2) ∃α, β, such that RX,Y = Q[f, g, α, β] ∈ EX

k .

Proof: 1) =⇒ 2) For given f, g, b, suppose α(x) =

log
∑
y′∈Y e

fT(x)g(y′)+b(y′), β(y) = −b(y) + logPY (y), then
we have RX,Y = P̃ [f, g, b] = Q[f, g, α, β] ∈ Ek. Besides, the
definition of P̃ implies that RX = PX . As a result, RX,Y =
Q[f, g, α, β] ∈ EX

k .
2) =⇒ 1) The definition of EX

k indicates that∑
y′∈Y

PX(x)PY (y′)ef
T(x)g(y′)−α(x)−β(y′) = PX(x),



X
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f(X)

· · ·
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P̃Y |X(y|x) ,
ef

T(x)g(y)+b(y)∑
y′∈Y e

fT(x)g(y′)+b(y′)

Softmax Output
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+1

Y = 1

Y = 2
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Y = |Y|

g(1)

g(2)

g(|Y|)

b(1)

b(2)

b(|Y|)

Fig. 3. A forward neural network for classification where f is the feature
generated by the last hidden layer, g and b are the weights and bias in the
last layer.

which implies α(x) = log
∑
y′∈Y PY (y′)ef

T(x)g(y′)−β(y′).
Then we have Q[f, g, α, β] = P̃ [f, g, b] with b(y) = −β(y) +
logPY (y).

Then, the following theorem shows the equivalence of the
original softmax regression problem (13) and the GSL problem
(2).

Theorem 2. The M-projections of PX,Y onto Ek,E
X
k , and EY

k

are the same, i.e.,

MEk
(PX,Y ) = MEX

k
(PX,Y ) = MEY

k
(PX,Y ).

Proof: For all QX,Y ∈ MEk
(PX,Y ) ⊂ E0

k ⊂ EX
k , by the

definition of MEk
(PX,Y ), we have

D(PX,Y ‖QX,Y ) ≤ D(PX,Y ‖Q′X,Y ), ∀Q′X,Y ∈ EX
k ⊂ Ek,

which implies QX,Y ∈ MEX
k
(PX,Y ). As a result, we

have MEk
(PX,Y ) ⊂ MEX

k
(PX,Y ). Suppose MEk

(PX,Y ) 6=
MEX

k
(PX,Y ), then for QX,Y ∈ MEX

k
(PX,Y ) \ MEk

(PX,Y ),
∃Q′X,Y ∈MEk

(PX,Y ) ⊂ EX
k such that

D(PX,Y ‖QX,Y ) > D(PX,Y ‖Q′X,Y ),

which implies QX,Y /∈ MEX
k
(PX,Y ) and contradicts the

assumption. Thus, we have MEk
(PX,Y ) = MEX

k
(PX,Y ).

Similarly, we can prove that MEk
(PX,Y ) = MEY

k
(PX,Y ).

Remark 1. It can be verified that the stationary distributions
of the original softmax regression problem (13) also coincide
with the stationary distributions of the GSL problem (2).

C. Applications in Neural Networks

Consider the forward neural network that uses data X to
predict label Y shown in Fig. 3, where f is the feature of X
extracted by the last hidden layer, g and b correspond to the
weights and bias in the last layer, respectively. When there are
enough hidden neurons in the neural network, f can express
any desired function [1]. Then training this neural network is
equivalent to solving the original softmax regression problem
(13). We will focus on such neural networks of which the
hidden layers have ideal expressive power.

From Theorem 2, the original softmax regression problem
MEX

k
(PX,Y ) and the GSL problem MEk

(PX,Y ) have the same
solution set. Since f and g are symmetric in the formulation
of the GSL problem (2), feature f and weights g extracted by
this neural network have symmetric roles in training.

Input

X

Output

Y

Feature
f(X)

Weights
g(Y )

· · ·

Hidden
Layers

(a) X-Y network

Input

Y

Output

X

Feature
g(Y )

Weights
f(X)

· · ·

Hidden
Layers

(b) Y -X network

Fig. 4. Symmetric (feature, weights) pairs generated by the X-Y network
and the Y -X network

Input Output

X

g(Y )
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f̂(X)
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1 2 3 4 5 6 7 8

−0.4

−0.2

0

0.2

0.4

x

f(x)

f̂(x)

(b) Comparison between f(x) and f̂(x)

Fig. 5. The simulation to verify the symmetry of neural networks

Furthermore, the following proposition as a straightforward
corollary of Theorem 2, demonstrates the symmetry between
the original network which uses X to predict Y and its reverse
network that uses Y to predict X .

Proposition 1. A neural network that uses X to predict Y
(X-Y network) and its reverse network that uses Y to predict
X (Y -X network) generate symmetric (feature, weights) pairs,
as illustrated in Fig. 4.

V. SIMULATION RESULTS

We design a numerical simulation to verify the symmetry
property of neural networks presented in Proposition 1. In par-
ticular, we set |X| = 8, |Y| = 6, with feature dimension k = 1.
For a given distribution PX,Y , we generate N = 100 000
samples of (xi, yi) then feed them to the X-Y network shown
in Fig. 4a. The input x is one-hot encoded, and the only hidden
layer is a fully connected layer used to generate f(x). With
proper weights in this hidden layer, f can express all possible
features of x. After training this network, we can obtain a
(feature, weights) pair (f, g).

Then, we use g(yi) as the input feature of the reverse neural
network shown in Fig. 5a2 to predict the label xi, and obtain
the trained weights f̂ . As shown in Fig. 5b, f̂(x) matches the
original feature f(x) precisely, thus verifying the symmetry
of these two neural networks.

VI. PROOFS

A. Proof of Lemma 1

Proof: As PX,Y ∈ relint(PX×Y), ∃ δP > 0 such that
∀ (x, y) ∈ X × Y, PX,Y (x, y) > δP . It can be shown that

2Due to the possibly non-uniqueness of (2), we use this simplified reverse
network instead of the Y -X network shown in Fig. 4b, to force the feature
in the reverse network to be g(Y ).



∃ δQ > 0, such that

min
(x,y)∈X×Y

QX,Y (x, y) > δQ

for all QX,Y ∈ Ek with D(PX,Y ‖QX,Y ) ≤ D(PX,Y ‖PXPY ).
Indeed, ∀ (x, y) ∈ X × Y, suppose p = PX,Y (x, y), q =

QX,Y (x, y), then

D(PX,Y ‖PXPY ) ≥ D(PX,Y ‖QX,Y )

≥ D(Bern(p)‖Bern(q))

= −H(p)− p log q − (1− p) log(1− q)
> −1− δP log q,

where the second inequality follows from the data processing
inequality. As a result, a valid choice of δQ is given by

δQ , exp

(
− 1

δP
[D(PX,Y ‖PXPY ) + 1]

)
, (14)

and we have 0 ≤ δQ < QX,Y (x, y) < 1. Suppose QX,Y =
Q[f, g, α, β], then fT(x)g(y)− α(x)− β(y) is bounded, i.e.,
there exists M1 > 0 such that ∀ (x, y) ∈ X× Y,∣∣fT(x)g(y)− α(x)− β(y)

∣∣ ≤M1. (15)

Note that the parameterization of QX,Y is non-unique, e.g.,
we have Q[f, g, α, β] = Q[f+c, g, α+cTg, β] for any constant
vector c. Without loss of generality, we can reparameterize
QX,Y and assume that EPX

[f(X)] = EPY
[g(Y )] = 0 and

EPX
[α(X)] = 0. Then from Jensen’s inequality, ∀ (x, y) ∈

X× Y,

|β(y)| =
∣∣EPX

[
fT(X)g(y)− α(X)− β(y)

]∣∣
≤ EPX

[∣∣fT(X)g(y)− α(X)− β(y)
∣∣]

≤M1,

(16)

|α(x)| ≤ |α(x) + EPY
[β(Y )]|+ |EPY

[β(Y )]|
≤
∣∣EPY

[
fT(x)g(Y )− α(x)− β(Y )

]∣∣+M1

≤ EPY

[∣∣fT(x)g(Y )− α(x)− β(Y )
∣∣]+M1

≤ 2M1.

(17)

As a result,∣∣fT(x)g(y)
∣∣ ≤ ∣∣fT(x)g(y)− α(x)− β(y)

∣∣+ |α(x)|+ |β(y)|
≤ 4M1,

i.e., all elements in FGT are bounded by 4M1, then the norm
equivalence [2] implies that∥∥FGT

∥∥
2
≤
√
|X||Y|

∥∥FGT
∥∥
max
≤ 4
√
|X||Y|M1. (18)

Suppose FGT has the compact SVD (Singular Value De-
composition) FGT = UΣVT, where Σ is a square matrix
containing all positive singular values of FGT, then we can
construct F̂ = UΣ1/2 and Ĝ = VΣ1/2, such that

F̂ĜT = FGT,
∥∥F̂∥∥

2
=
∥∥Ĝ∥∥

2
=
∥∥FGT

∥∥1/2
2

. (19)

Let f̂ , ĝ be the functions corresponding to F̂, Ĝ, respec-
tively, then Q[f, g, α, β] = Q[f̂ , ĝ, α, β]. Since ‖F̂‖2 and
‖Ĝ‖2 are bounded, from norm equivalence, we have ‖F̂‖F ≤

M2, ‖Ĝ‖F ≤ M2 with M2 , 2
√
|X||Y|M1. Thus ∀ (x, y) ∈

X× Y,

‖f̂(x)‖ ≤ ‖F̂‖F ≤M2, ‖ĝ(y)‖ ≤ ‖Ĝ‖F ≤M2. (20)

Let M , max{2M1,M2}, then M only depends on PX,Y .
As a result, we have QX,Y = Q[f̂ , ĝ, α, β] with

max
(x,y)∈X×Y

{
‖f̂(x)‖, ‖ĝ(y)‖, |α(x)|, |β(y)|

}
≤M(PX,Y ).

B. Proof of Lemma 2
Proof: Suppose RX,Y ∈ Ek, then there exist parameters

f, g, α, β such that RX,Y = Q[f, g, α, β]. Thus we have,
∀ (x, y) ∈ X× Y,

log
RX,Y (x, y)

RX(x)RY (y)
= fT(x)g(y)− α(x)− β(y). (21)

The above condition can be equivalently expressed as

Γ = FGT − 1|X|β
T −α1T

|Y|, (22)

where 1m is an m-dimensional column vector with all ele-
ments equaling 1. If rank(Γ) ≤ k, we can find an (F,G) pair
such that Γ = FGT and RX,Y = Q[f, g, 0, 0]. Besides, (22)
implies

rank(Γ) ≤ rank(FGT) + 2 ≤ k + 2. (23)

As a consequence, RX,Y /∈ Ek if rank(Γ) > k + 2.

VII. CONCLUSION

In this work, we studied the geometric structure of the
generalized softmax learning (GSL) problem. This geometric
structure established the equivalence of GSL and the original
softmax regression problem. Moreover, using the connection
between neural networks and softmax learning problems, we
presented the symmetric roles of the weights and feature in a
neural network and the symmetry between a neural network
and its reverse network.
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